Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Solve a system of equations in three variables using substitution
Solve the system by substitution.
\newline
−
5
x
−
7
y
=
−
46
y
=
−
4
x
\begin{aligned} -5 x-7 y & =-46 \\ y & =-4 x \end{aligned}
−
5
x
−
7
y
y
=
−
46
=
−
4
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
x
−
7
y
=
36
y
=
−
5
x
\begin{aligned} x-7 y & =36 \\ y & =-5 x \end{aligned}
x
−
7
y
y
=
36
=
−
5
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
3
y
=
x
3
x
−
4
y
=
−
25
\begin{aligned} 3 y & =x \\ 3 x-4 y & =-25 \end{aligned}
3
y
3
x
−
4
y
=
x
=
−
25
Get tutor help
Solve the system by substitution.
\newline
y
=
2
x
y
=
9
x
+
21
\begin{array}{l} y=2 x \\ y=9 x+21 \end{array}
y
=
2
x
y
=
9
x
+
21
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
5
x
−
24
y
=
x
\begin{array}{l} y=-5 x-24 \\ y=x \end{array}
y
=
−
5
x
−
24
y
=
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
2
x
y
=
−
6
x
+
12
\begin{array}{l} y=-2 x \\ y=-6 x+12 \end{array}
y
=
−
2
x
y
=
−
6
x
+
12
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
2
x
−
50
y
=
8
x
\begin{array}{l} y=-2 x-50 \\ y=8 x \end{array}
y
=
−
2
x
−
50
y
=
8
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
4
x
−
7
−
7
x
+
10
y
=
−
23
\begin{aligned} y & =-4 x-7 \\ -7 x+10 y & =-23 \end{aligned}
y
−
7
x
+
10
y
=
−
4
x
−
7
=
−
23
Get tutor help
Solve the system by substitution.
\newline
y
=
−
5
x
−
44
y
=
6
x
\begin{array}{l} y=-5 x-44 \\ y=6 x \end{array}
y
=
−
5
x
−
44
y
=
6
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
5
x
+
7
y
=
6
x
\begin{array}{l} y=5 x+7 \\ y=6 x \end{array}
y
=
5
x
+
7
y
=
6
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
9
x
+
15
y
=
4
x
\begin{array}{l} y=9 x+15 \\ y=4 x \end{array}
y
=
9
x
+
15
y
=
4
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
8
x
y
=
2
x
−
12
\begin{array}{l} y=8 x \\ y=2 x-12 \end{array}
y
=
8
x
y
=
2
x
−
12
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
8
x
+
18
y
=
10
x
\begin{array}{l} y=-8 x+18 \\ y=10 x \end{array}
y
=
−
8
x
+
18
y
=
10
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
4
x
y
=
−
x
−
15
\begin{array}{l} y=-4 x \\ y=-x-15 \end{array}
y
=
−
4
x
y
=
−
x
−
15
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
7
x
−
42
y
=
7
x
\begin{array}{l} y=-7 x-42 \\ y=7 x \end{array}
y
=
−
7
x
−
42
y
=
7
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
7
x
−
13
y
=
−
6
x
\begin{array}{l} y=7 x-13 \\ y=-6 x \end{array}
y
=
7
x
−
13
y
=
−
6
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
4
x
+
7
y
=
−
2
x
=
−
2
y
\begin{aligned} 4 x+7 y & =-2 \\ x & =-2 y \end{aligned}
4
x
+
7
y
x
=
−
2
=
−
2
y
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
2
x
−
3
x
−
7
y
=
−
11
\begin{aligned} y & =-2 x \\ -3 x-7 y & =-11 \end{aligned}
y
−
3
x
−
7
y
=
−
2
x
=
−
11
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
2
y
=
x
x
+
8
y
=
−
6
\begin{aligned} -2 y & =x \\ x+8 y & =-6 \end{aligned}
−
2
y
x
+
8
y
=
x
=
−
6
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
7
x
+
y
=
26
y
=
−
6
x
\begin{aligned} -7 x+y & =26 \\ y & =-6 x \end{aligned}
−
7
x
+
y
y
=
26
=
−
6
x
Get tutor help
Solve the system by substitution.
\newline
3
y
=
x
−
3
x
+
6
y
=
6
\begin{array}{r} 3 y=x \\ -3 x+6 y=6 \end{array}
3
y
=
x
−
3
x
+
6
y
=
6
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
8
x
=
y
−
9
x
+
2
y
=
21
\begin{aligned} 8 x & =y \\ -9 x+2 y & =21 \end{aligned}
8
x
−
9
x
+
2
y
=
y
=
21
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
x
−
6
y
=
8
−
10
y
=
x
\begin{array}{r} -x-6 y=8 \\ -10 y=x \end{array}
−
x
−
6
y
=
8
−
10
y
=
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
2
x
−
2
y
=
−
32
−
9
y
=
x
\begin{aligned} -2 x-2 y & =-32 \\ -9 y & =x \end{aligned}
−
2
x
−
2
y
−
9
y
=
−
32
=
x
Get tutor help
Solve the system by substitution.
\newline
−
2
x
+
7
y
=
−
40
y
=
x
\begin{aligned} -2 x+7 y & =-40 \\ y & =x \end{aligned}
−
2
x
+
7
y
y
=
−
40
=
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
5
x
8
x
−
3
y
=
35
\begin{aligned} y & =5 x \\ 8 x-3 y & =35 \end{aligned}
y
8
x
−
3
y
=
5
x
=
35
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
3
y
=
x
2
x
−
7
y
=
9
\begin{aligned} 3 y & =x \\ 2 x-7 y & =9 \end{aligned}
3
y
2
x
−
7
y
=
x
=
9
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
4
x
−
y
=
21
y
=
3
x
\begin{aligned} -4 x-y & =21 \\ y & =3 x \end{aligned}
−
4
x
−
y
y
=
21
=
3
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
2
x
+
8
y
=
28
x
=
10
y
\begin{aligned} 2 x+8 y & =28 \\ x & =10 y \end{aligned}
2
x
+
8
y
x
=
28
=
10
y
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
x
−
3
y
=
−
35
2
x
=
y
\begin{aligned} -x-3 y & =-35 \\ 2 x & =y \end{aligned}
−
x
−
3
y
2
x
=
−
35
=
y
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
x
=
y
−
6
x
−
2
y
=
20
\begin{aligned} -x & =y \\ -6 x-2 y & =20 \end{aligned}
−
x
−
6
x
−
2
y
=
y
=
20
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
3
y
=
x
−
x
+
y
=
−
12
\begin{array}{c} 3 y=x \\ -x+y=-12 \end{array}
3
y
=
x
−
x
+
y
=
−
12
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
2
x
7
x
−
2
y
=
12
\begin{aligned} y & =2 x \\ 7 x-2 y & =12 \end{aligned}
y
7
x
−
2
y
=
2
x
=
12
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
−
6
x
+
4
y
=
38
x
=
7
y
\begin{aligned} -6 x+4 y & =38 \\ x & =7 y \end{aligned}
−
6
x
+
4
y
x
=
38
=
7
y
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
6
x
y
=
−
5
x
+
3
\begin{array}{l} y=-6 x \\ y=-5 x+3 \end{array}
y
=
−
6
x
y
=
−
5
x
+
3
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
x
y
=
10
x
−
9
\begin{array}{l} y=x \\ y=10 x-9 \end{array}
y
=
x
y
=
10
x
−
9
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
2
x
−
5
y
=
7
x
\begin{array}{l} y=2 x-5 \\ y=7 x \end{array}
y
=
2
x
−
5
y
=
7
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
3
x
y
=
4
x
+
10
\begin{array}{l} y=3 x \\ y=4 x+10 \end{array}
y
=
3
x
y
=
4
x
+
10
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
3
x
y
=
−
2
x
−
35
\begin{array}{l} y=3 x \\ y=-2 x-35 \end{array}
y
=
3
x
y
=
−
2
x
−
35
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
4
x
+
42
y
=
3
x
\begin{array}{l} y=-4 x+42 \\ y=3 x \end{array}
y
=
−
4
x
+
42
y
=
3
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
2
x
−
48
y
=
−
6
x
\begin{array}{l} y=2 x-48 \\ y=-6 x \end{array}
y
=
2
x
−
48
y
=
−
6
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system by substitution.
\newline
y
=
−
9
x
+
35
y
=
−
2
x
\begin{array}{l} y=-9 x+35 \\ y=-2 x \end{array}
y
=
−
9
x
+
35
y
=
−
2
x
\newline
(
□
,
□
)
(\square, \square)
(
□
,
□
)
Get tutor help
Solve the system of equations by substitution.
\newline
−
3
x
−
y
−
3
z
=
−
11
-3x - y - 3z = -11
−
3
x
−
y
−
3
z
=
−
11
\newline
z
=
5
z = 5
z
=
5
\newline
x
−
y
+
3
z
=
19
x - y + 3z = 19
x
−
y
+
3
z
=
19
\newline
(____.____,____)
Get tutor help
Previous
1
2