Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Find the roots of factored polynomials
If
a
1
=
2
a_{1}=2
a
1
=
2
and
a
n
+
1
=
−
2
a
n
−
3
a_{n+1}=-2 a_{n}-3
a
n
+
1
=
−
2
a
n
−
3
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
+
1
=
−
2
a
n
−
1
a_{n+1}=-2 a_{n}-1
a
n
+
1
=
−
2
a
n
−
1
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
+
1
=
(
a
n
)
2
+
2
a_{n+1}=\left(a_{n}\right)^{2}+2
a
n
+
1
=
(
a
n
)
2
+
2
then find the value of
a
3
a_{3}
a
3
.
\newline
Answer:
Get tutor help
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
+
1
=
−
5
a
n
−
3
a_{n+1}=-5 a_{n}-3
a
n
+
1
=
−
5
a
n
−
3
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
Find the
y
y
y
-coordinate of the
y
y
y
-intercept of the polynomial function defined below.
\newline
f
(
x
)
=
−
x
(
x
−
3
)
(
x
2
+
2
)
3
f(x)=-x(x-3)\left(x^{2}+2\right)^{3}
f
(
x
)
=
−
x
(
x
−
3
)
(
x
2
+
2
)
3
\newline
Answer:
Get tutor help
Find the
y
y
y
-coordinate of the
y
y
y
-intercept of the polynomial function defined below.
\newline
f
(
x
)
=
(
4
x
2
−
5
)
(
2
x
+
4
)
(
x
2
−
1
)
f(x)=\left(4 x^{2}-5\right)(2 x+4)\left(x^{2}-1\right)
f
(
x
)
=
(
4
x
2
−
5
)
(
2
x
+
4
)
(
x
2
−
1
)
\newline
Answer:
Get tutor help
Find the
y
y
y
-coordinate of the
y
y
y
-intercept of the polynomial function defined below.
\newline
f
(
x
)
=
−
(
x
+
4
)
(
5
x
2
−
5
)
(
x
+
2
)
2
f(x)=-(x+4)\left(5 x^{2}-5\right)(x+2)^{2}
f
(
x
)
=
−
(
x
+
4
)
(
5
x
2
−
5
)
(
x
+
2
)
2
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
17
17
17
.
\newline
y
=
x
−
1
y=\sqrt{x-1}
y
=
x
−
1
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
4
-4
−
4
.
\newline
y
=
35
x
−
3
y=\frac{35}{x-3}
y
=
x
−
3
35
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
10
-10
−
10
.
\newline
y
=
6
x
+
8
y=\frac{6}{x+8}
y
=
x
+
8
6
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
31
31
31
.
\newline
y
=
x
+
18
y=\sqrt{x+18}
y
=
x
+
18
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
34
34
34
.
\newline
y
=
x
−
18
y=\sqrt{x-18}
y
=
x
−
18
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
3
-3
−
3
.
\newline
y
=
10
x
+
1
y=\frac{10}{x+1}
y
=
x
+
1
10
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
4
-4
−
4
.
\newline
y
=
40
x
+
8
y=\frac{40}{x+8}
y
=
x
+
8
40
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
4
-4
−
4
.
\newline
y
=
10
x
+
2
y=\frac{10}{x+2}
y
=
x
+
2
10
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
10
10
10
.
\newline
y
=
12
x
−
6
y=\frac{12}{x-6}
y
=
x
−
6
12
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
1
1
1
.
\newline
y
=
9
x
+
2
y=\frac{9}{x+2}
y
=
x
+
2
9
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
4
-4
−
4
.
\newline
y
=
10
x
−
1
y=\frac{10}{x-1}
y
=
x
−
1
10
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
8
8
8
.
\newline
y
=
30
x
−
10
y=\frac{30}{x-10}
y
=
x
−
10
30
\newline
Answer:
Get tutor help
Question
\newline
Find all horizontal asymptotes of the following function.
\newline
f
(
x
)
=
x
−
4
10
x
2
−
56
x
+
64
f(x)=\frac{x-4}{10 x^{2}-56 x+64}
f
(
x
)
=
10
x
2
−
56
x
+
64
x
−
4
\newline
Get tutor help
Find the fifth term of the geometric sequence
7
,
−
14
,
28
,
…
7,-14,28, \ldots
7
,
−
14
,
28
,
…
\newline
a
5
=
□
\mathrm{a}_{5}=\square
a
5
=
□
Get tutor help
Find the zeros of the function. Enter the solutions from least to greatest.
\newline
h
(
x
)
=
(
−
4
x
−
3
)
(
x
−
3
)
h(x)=(-4 x-3)(x-3)
h
(
x
)
=
(
−
4
x
−
3
)
(
x
−
3
)
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
3
(
4
x
−
1
5
)
−
4
x
=
6
(
x
+
3
5
)
3\left(4 x-\frac{1}{5}\right)-4 x=6\left(x+\frac{3}{5}\right)
3
(
4
x
−
5
1
)
−
4
x
=
6
(
x
+
5
3
)
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
−
1
4
(
6
x
+
1
)
−
3
=
1
2
x
-\frac{1}{4}(6 x+1)-3=\frac{1}{2} x
−
4
1
(
6
x
+
1
)
−
3
=
2
1
x
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
−
x
=
x
+
3
5
(
4
x
−
1
3
)
+
1
-x=x+\frac{3}{5}\left(4 x-\frac{1}{3}\right)+1
−
x
=
x
+
5
3
(
4
x
−
3
1
)
+
1
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
−
6
x
+
6
(
−
2
x
+
3
2
)
−
6
=
−
5
2
(
2
x
−
2
)
-6 x+6\left(-2 x+\frac{3}{2}\right)-6=-\frac{5}{2}(2 x-2)
−
6
x
+
6
(
−
2
x
+
2
3
)
−
6
=
−
2
5
(
2
x
−
2
)
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
−
5
(
x
−
4
)
−
7
x
=
5
(
2
5
x
+
8
5
)
−
9
-5(x-4)-7 x=5\left(\frac{2}{5} x+\frac{8}{5}\right)-9
−
5
(
x
−
4
)
−
7
x
=
5
(
5
2
x
+
5
8
)
−
9
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
10
x
−
(
x
+
1
)
=
−
3
(
−
x
−
5
4
)
−
3
4
10 x-(x+1)=-3\left(-x-\frac{5}{4}\right)-\frac{3}{4}
10
x
−
(
x
+
1
)
=
−
3
(
−
x
−
4
5
)
−
4
3
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
−
8
−
7
4
x
=
−
5
2
x
−
(
−
x
+
1
)
-8-\frac{7}{4} x=-\frac{5}{2} x-(-x+1)
−
8
−
4
7
x
=
−
2
5
x
−
(
−
x
+
1
)
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
and write your answer in simplest form.
\newline
−
3
x
+
2
(
4
x
+
3
5
)
=
9
5
−
4
5
(
−
4
x
−
5
)
-3 x+2\left(4 x+\frac{3}{5}\right)=\frac{9}{5}-\frac{4}{5}(-4 x-5)
−
3
x
+
2
(
4
x
+
5
3
)
=
5
9
−
5
4
(
−
4
x
−
5
)
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
. Express your answer as a proper or improper fraction in simplest terms.
\newline
5
11
x
−
1
4
=
1
2
\frac{5}{11} x-\frac{1}{4}=\frac{1}{2}
11
5
x
−
4
1
=
2
1
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
b
b
b
. Express your answer as a proper or improper fraction in simplest terms.
\newline
3
4
b
−
5
6
=
−
1
4
\frac{3}{4} b-\frac{5}{6}=-\frac{1}{4}
4
3
b
−
6
5
=
−
4
1
\newline
Answer:
b
=
b=
b
=
Get tutor help
Solve for
z
z
z
. Express your answer as a proper or improper fraction in simplest terms.
\newline
2
3
=
−
5
6
+
8
9
z
\frac{2}{3}=-\frac{5}{6}+\frac{8}{9} z
3
2
=
−
6
5
+
9
8
z
\newline
Answer:
z
=
z=
z
=
Get tutor help
Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
x
2
−
2
x
−
7
y=x^{2}-2 x-7
y
=
x
2
−
2
x
−
7
\newline
Answer:
Get tutor help
Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
x
2
−
12
x
+
28
y=x^{2}-12 x+28
y
=
x
2
−
12
x
+
28
\newline
Answer:
Get tutor help
Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
x
2
−
6
x
+
9
y=x^{2}-6 x+9
y
=
x
2
−
6
x
+
9
\newline
Answer:
Get tutor help
Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
−
2
x
2
−
20
x
−
64
y=-2 x^{2}-20 x-64
y
=
−
2
x
2
−
20
x
−
64
\newline
Answer:
Get tutor help
Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
−
x
2
−
7
y=-x^{2}-7
y
=
−
x
2
−
7
\newline
Answer:
Get tutor help
Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
x
2
−
10
x
+
17
y=x^{2}-10 x+17
y
=
x
2
−
10
x
+
17
\newline
Answer:
Get tutor help
Solve the following equation for
d
d
d
. Be sure to take into account whether a letter is capitalized or not.
\newline
d
8
=
f
−
g
\frac{d}{8}=f-g
8
d
=
f
−
g
\newline
Answer:
d
=
d=
d
=
Get tutor help
Solve the following equation for
b
b
b
. Be sure to take into account whether a letter is capitalized or not.
\newline
1
4
b
=
3
d
+
G
2
\frac{1}{4} b=3 d+G^{2}
4
1
b
=
3
d
+
G
2
\newline
Answer:
b
=
b=
b
=
Get tutor help
The second derivative of the function
f
f
f
is defined by
f
′
′
(
x
)
=
x
2
+
3
cos
(
2
x
)
f^{\prime \prime}(x)=x^{2}+3 \cos (2 x)
f
′′
(
x
)
=
x
2
+
3
cos
(
2
x
)
for
−
0.5
<
x
<
2
-0.5<x<2
−
0.5
<
x
<
2
. Find the
x
x
x
-values, if any, in the given domain where the function
f
f
f
has an inflection point. You may use a calculator and round all values to
3
3
3
decimal places.
\newline
Answer:
x
=
x=
x
=
Get tutor help
The derivative of the function
f
f
f
is defined by
f
′
(
x
)
=
x
2
+
5
sin
(
2
x
+
4
)
f^{\prime}(x)=x^{2}+5 \sin (2 x+4)
f
′
(
x
)
=
x
2
+
5
sin
(
2
x
+
4
)
for
0
<
x
<
3.5
0<x<3.5
0
<
x
<
3.5
. Find the
x
x
x
-values, if any, in the given domain where the function
f
f
f
has an inflection point. You may use a calculator and round all values to
3
3
3
decimal places.
\newline
Answer:
x
=
x=
x
=
Get tutor help
Find the
x
x
x
-coordinates of all relative minima of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
2
x
3
−
15
x
2
+
17
f(x)=2 x^{3}-15 x^{2}+17
f
(
x
)
=
2
x
3
−
15
x
2
+
17
\newline
Answer:
x
=
x=
x
=
Get tutor help
Find the coordinates of the vertex of the following parabola using graphing technology. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
−
x
2
−
8
x
−
16
y=-x^{2}-8 x-16
y
=
−
x
2
−
8
x
−
16
\newline
Answer:
Get tutor help
Find the coordinates of the vertex of the following parabola using graphing technology. Write your answer as an
(
x
,
y
)
(x, y)
(
x
,
y
)
point.
\newline
y
=
2
x
2
−
8
y=2 x^{2}-8
y
=
2
x
2
−
8
\newline
Answer:
Get tutor help
Factor the expression completely.
\newline
x
4
+
4
x
2
−
5
x^{4}+4 x^{2}-5
x
4
+
4
x
2
−
5
\newline
Answer:
Get tutor help
Solve for
x
\mathrm{x}
x
in simplest form.
\newline
8
=
7
5
(
4
x
+
5
)
8=\frac{7}{5}(4 x+5)
8
=
5
7
(
4
x
+
5
)
\newline
Answer:
Get tutor help
Solve for
x
\mathrm{x}
x
in simplest form.
\newline
7
=
3
2
(
x
+
8
)
7=\frac{3}{2}(x+8)
7
=
2
3
(
x
+
8
)
\newline
Answer:
Get tutor help
Solve for
x
\mathrm{x}
x
in simplest form.
\newline
3
=
7
2
(
3
x
+
4
)
3=\frac{7}{2}(3 x+4)
3
=
2
7
(
3
x
+
4
)
\newline
Answer:
Get tutor help
Previous
1
...
3
4
5
...
6
Next