Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n+1)=-2a_(n)-1 then find the value of 
a_(4).
Answer:

If a1=3 a_{1}=3 and an+1=2an1 a_{n+1}=-2 a_{n}-1 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an+1=2an1 a_{n+1}=-2 a_{n}-1 then find the value of a4 a_{4} .\newlineAnswer:
  1. Initialize with a1a_{1}: To find the value of a4a_{4}, we need to use the recursive formula an+1=2an1a_{n+1}=-2a_{n}-1 starting from n=1n=1 where a1=3a_{1}=3.
  2. Find a2a_{2}: First, let's find a2a_{2} using the formula with n=1n=1: a2=2a11=2×31=61=7a_{2} = -2a_{1} - 1 = -2\times3 - 1 = -6 - 1 = -7.
  3. Find a3a_{3}: Next, we find a3a_{3} using the formula with n=2n=2: a3=2a21=2(7)1=141=13a_{3} = -2a_{2} - 1 = -2*(-7) - 1 = 14 - 1 = 13.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the formula with n=3n=3: a4=2a31=2×131=261=27a_{4} = -2a_{3} - 1 = -2\times13 - 1 = -26 - 1 = -27.

More problems from Find the roots of factored polynomials