Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
+
1
=
−
2
a
n
−
1
a_{n+1}=-2 a_{n}-1
a
n
+
1
=
−
2
a
n
−
1
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
View step-by-step help
Home
Math Problems
Precalculus
Find the roots of factored polynomials
Full solution
Q.
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
+
1
=
−
2
a
n
−
1
a_{n+1}=-2 a_{n}-1
a
n
+
1
=
−
2
a
n
−
1
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Initialize with
a
1
a_{1}
a
1
:
To find the value of
a
4
a_{4}
a
4
, we need to use the recursive formula
a
n
+
1
=
−
2
a
n
−
1
a_{n+1}=-2a_{n}-1
a
n
+
1
=
−
2
a
n
−
1
starting from
n
=
1
n=1
n
=
1
where
a
1
=
3
a_{1}=3
a
1
=
3
.
Find
a
2
a_{2}
a
2
:
First, let's find
a
2
a_{2}
a
2
using the formula with
n
=
1
n=1
n
=
1
:
a
2
=
−
2
a
1
−
1
=
−
2
×
3
−
1
=
−
6
−
1
=
−
7
a_{2} = -2a_{1} - 1 = -2\times3 - 1 = -6 - 1 = -7
a
2
=
−
2
a
1
−
1
=
−
2
×
3
−
1
=
−
6
−
1
=
−
7
.
Find
a
3
a_{3}
a
3
:
Next, we find
a
3
a_{3}
a
3
using the formula with
n
=
2
n=2
n
=
2
:
a
3
=
−
2
a
2
−
1
=
−
2
∗
(
−
7
)
−
1
=
14
−
1
=
13
a_{3} = -2a_{2} - 1 = -2*(-7) - 1 = 14 - 1 = 13
a
3
=
−
2
a
2
−
1
=
−
2
∗
(
−
7
)
−
1
=
14
−
1
=
13
.
Find
a
4
a_{4}
a
4
:
Finally, we find
a
4
a_{4}
a
4
using the formula with
n
=
3
n=3
n
=
3
:
a
4
=
−
2
a
3
−
1
=
−
2
×
13
−
1
=
−
26
−
1
=
−
27
a_{4} = -2a_{3} - 1 = -2\times13 - 1 = -26 - 1 = -27
a
4
=
−
2
a
3
−
1
=
−
2
×
13
−
1
=
−
26
−
1
=
−
27
.
More problems from Find the roots of factored polynomials
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant