Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n+1)=(a_(n))^(2)+2 then find the value of 
a_(3).
Answer:

If a1=3 a_{1}=3 and an+1=(an)2+2 a_{n+1}=\left(a_{n}\right)^{2}+2 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an+1=(an)2+2 a_{n+1}=\left(a_{n}\right)^{2}+2 then find the value of a3 a_{3} .\newlineAnswer:
  1. Calculate a2a_{2}: Determine the value of a2a_{2} using the given recursive formula.\newlineThe recursive formula is an+1=(an)2+2a_{n+1}=(a_{n})^2+2. We know that a1=3a_{1}=3, so we can find a2a_{2} by plugging n=1n=1 into the formula.\newlinea2=(a1)2+2=32+2=9+2=11a_{2} = (a_{1})^2 + 2 = 3^2 + 2 = 9 + 2 = 11.
  2. Calculate a3a_{3}: Determine the value of a3a_{3} using the recursive formula and the value of a2a_{2}.\newlineNow that we have a2=11a_{2}=11, we can find a3a_{3} by plugging n=2n=2 into the formula.\newlinea3=(a2)2+2=112+2=121+2=123a_{3} = (a_{2})^2 + 2 = 11^2 + 2 = 121 + 2 = 123.

More problems from Find the roots of factored polynomials