Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2 and 
a_(n+1)=-2a_(n)-3 then find the value of 
a_(4).
Answer:

If a1=2 a_{1}=2 and an+1=2an3 a_{n+1}=-2 a_{n}-3 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2 a_{1}=2 and an+1=2an3 a_{n+1}=-2 a_{n}-3 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms: We are given the first term of the sequence, a1=2a_{1}=2, and the recursive formula for the sequence, an+1=2an3a_{n+1}=-2a_{n}-3. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: Let's find a2a_{2} using the recursive formula. We substitute n=1n=1 into the formula to get a2=2a13a_{2}=-2a_{1}-3.\newlinea2=2×a13a_{2} = -2 \times a_{1} - 3\newlinea2=2×23a_{2} = -2 \times 2 - 3\newlinea2=43a_{2} = -4 - 3\newlinea2=7a_{2} = -7
  3. Find a3a_{3}: Now let's find a3a_{3} using the recursive formula. We substitute n=2n=2 into the formula to get a3=2a23.a_{3}=-2a_{2}-3.\newlinea3=2×a23a_{3} = -2 \times a_{2} - 3\newlinea3=2×(7)3a_{3} = -2 \times (-7) - 3\newlinea3=143a_{3} = 14 - 3\newlinea3=11a_{3} = 11
  4. Find a4a_{4}: Finally, let's find a4a_{4} using the recursive formula. We substitute n=3n=3 into the formula to get a4=2a33a_{4}=-2a_{3}-3.
    a4=2×a33a_{4} = -2 \times a_{3} - 3
    a4=2×113a_{4} = -2 \times 11 - 3
    a4=223a_{4} = -22 - 3
    a4=25a_{4} = -25

More problems from Find the roots of factored polynomials