Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n+1)=-5a_(n)-3 then find the value of 
a_(4).
Answer:

If a1=3 a_{1}=3 and an+1=5an3 a_{n+1}=-5 a_{n}-3 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an+1=5an3 a_{n+1}=-5 a_{n}-3 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms: We are given the first term of the sequence, a1=3a_{1}=3, and the recursive formula for the sequence, an+1=5an3a_{n+1}=-5a_{n}-3. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: Let's find a2a_{2} using the recursive formula. We substitute n=1n=1 into the formula to get a2=5a13a_{2}=-5a_{1}-3.\newlinea2=5×a13a_{2} = -5 \times a_{1} - 3\newlinea2=5×33a_{2} = -5 \times 3 - 3\newlinea2=153a_{2} = -15 - 3\newlinea2=18a_{2} = -18
  3. Find a3a_{3}: Next, we find a3a_{3} using the recursive formula. We substitute n=2n=2 into the formula to get a3=5a23a_{3}=-5a_{2}-3.\newlinea3=5×a23a_{3} = -5 \times a_{2} - 3\newlinea3=5×(18)3a_{3} = -5 \times (-18) - 3\newlinea3=903a_{3} = 90 - 3\newlinea3=87a_{3} = 87
  4. Find a4a_{4}: Finally, we find a4a_{4} using the recursive formula. We substitute n=3n=3 into the formula to get a4=5a33a_{4}=-5a_{3}-3.\newlinea4=5×a33a_{4} = -5 \times a_{3} - 3\newlinea4=5×873a_{4} = -5 \times 87 - 3\newlinea4=4353a_{4} = -435 - 3\newlinea4=438a_{4} = -438

More problems from Find the roots of factored polynomials