Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x and write your answer in simplest form.

-3x+2(4x+(3)/(5))=(9)/(5)-(4)/(5)(-4x-5)
Answer: 
x=

Solve for x x and write your answer in simplest form.\newline3x+2(4x+35)=9545(4x5) -3 x+2\left(4 x+\frac{3}{5}\right)=\frac{9}{5}-\frac{4}{5}(-4 x-5) \newlineAnswer: x= x=

Full solution

Q. Solve for x x and write your answer in simplest form.\newline3x+2(4x+35)=9545(4x5) -3 x+2\left(4 x+\frac{3}{5}\right)=\frac{9}{5}-\frac{4}{5}(-4 x-5) \newlineAnswer: x= x=
  1. Expand and Simplify: First, expand the left side of the equation to simplify the expression.\newline3x+2(4x+35)=3x+8x+65-3x + 2(4x + \frac{3}{5}) = -3x + 8x + \frac{6}{5}\newlineCombine like terms on the left side.\newline(3x+8x)+65=5x+65(-3x + 8x) + \frac{6}{5} = 5x + \frac{6}{5}
  2. Combine Like Terms: Now, expand the right side of the equation.\newline(95)(45)(4x5)=(95)(45)(4x)(45)(5)(\frac{9}{5}) - (\frac{4}{5})(-4x - 5) = (\frac{9}{5}) - (\frac{4}{5})(-4x) - (\frac{4}{5})(-5)\newlineSimplify the right side.\newline(95)+(165)x+4=(95)+(165)x+(205)(\frac{9}{5}) + (\frac{16}{5})x + 4 = (\frac{9}{5}) + (\frac{16}{5})x + (\frac{20}{5})\newlineCombine like terms on the right side.\newline(\frac{\(9\)}{\(5\)}) + (\frac{\(20\)}{\(5\)}) + (\frac{\(16\)}{\(5\)})x = (\frac{\(29\)}{\(5\)}) + (\frac{\(16\)}{\(5\)})x
  3. Expand and Simplify: Now we have a simplified equation:\(\newline5x+65=295+165x5x + \frac{6}{5} = \frac{29}{5} + \frac{16}{5}x\newlineSubtract 165x\frac{16}{5}x from both sides to get all x terms on one side.\newline5x165x+65=2955x - \frac{16}{5}x + \frac{6}{5} = \frac{29}{5}\newlineCombine like terms on the left side.\newline255x165x+65=295\frac{25}{5}x - \frac{16}{5}x + \frac{6}{5} = \frac{29}{5}\newline95x+65=295\frac{9}{5}x + \frac{6}{5} = \frac{29}{5}
  4. Combine Like Terms: Subtract 65\frac{6}{5} from both sides to isolate the xx term.\newline(95)x=(295)(65)(\frac{9}{5})x = (\frac{29}{5}) - (\frac{6}{5})\newlineCombine like terms on the right side.\newline(95)x=(235)(\frac{9}{5})x = (\frac{23}{5})
  5. Isolate xx Term: Divide both sides by (9/5)(9/5) to solve for xx.x=235/95x = \frac{23}{5} / \frac{9}{5}Multiply by the reciprocal of (9/5)(9/5).x=235×59x = \frac{23}{5} \times \frac{5}{9}Simplify the expression.x=239x = \frac{23}{9}

More problems from Find the roots of factored polynomials