Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the 
y-coordinate of the 
y-intercept of the polynomial function defined below.

f(x)=-(x+4)(5x^(2)-5)(x+2)^(2)
Answer:

Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=(x+4)(5x25)(x+2)2 f(x)=-(x+4)\left(5 x^{2}-5\right)(x+2)^{2} \newlineAnswer:

Full solution

Q. Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=(x+4)(5x25)(x+2)2 f(x)=-(x+4)\left(5 x^{2}-5\right)(x+2)^{2} \newlineAnswer:
  1. Evaluate at x=0x=0: To find the yy-coordinate of the yy-intercept of the polynomial function f(x)f(x), we need to evaluate f(x)f(x) at x=0x = 0, because the yy-intercept occurs where the graph of the function crosses the yy-axis, and the xx-coordinate of any point on the yy-axis is yy00.
  2. Substitute x=0x=0: Substitute x=0x = 0 into the polynomial function f(x)f(x) to find the yy-coordinate of the yy-intercept.\newlinef(x)=(x+4)(5x25)(x+2)2f(x) = -(x+4)(5x^2-5)(x+2)^2\newlinef(0)=(0+4)(5025)(0+2)2f(0) = -(0+4)(5\cdot0^2-5)(0+2)^2
  3. Simplify expression: Simplify the expression by performing the calculations.\newlinef(0)=4×(5)×22f(0) = -4 \times (-5) \times 2^2\newlinef(0)=4×(5)×4f(0) = -4 \times (-5) \times 4
  4. Continue simplifying: Continue simplifying the expression by multiplying the numbers together.\newlinef(0)=20×4f(0) = 20 \times 4\newlinef(0)=80f(0) = 80

More problems from Find the roots of factored polynomials