Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the 
y-coordinate of the 
y-intercept of the polynomial function defined below.

f(x)=-x(x-3)(x^(2)+2)^(3)
Answer:

Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=x(x3)(x2+2)3 f(x)=-x(x-3)\left(x^{2}+2\right)^{3} \newlineAnswer:

Full solution

Q. Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=x(x3)(x2+2)3 f(x)=-x(x-3)\left(x^{2}+2\right)^{3} \newlineAnswer:
  1. Evaluate at x=0x = 0: To find the yy-coordinate of the yy-intercept of the polynomial function f(x)f(x), we need to evaluate the function at x=0x = 0. This is because the yy-intercept occurs where the graph of the function crosses the yy-axis, and the xx-coordinate of any point on the yy-axis is 00.
  2. Substitute x=0x = 0: Substitute x=0x = 0 into the function f(x)=x(x3)(x2+2)3f(x) = -x(x - 3)(x^2 + 2)^3.\newlinef(0)=0(03)(02+2)3f(0) = -0(0 - 3)(0^2 + 2)^3
  3. Simplify expression: Simplify the expression by performing the operations.\newlinef(0)=0×(3)×(0+2)3f(0) = -0 \times (-3) \times (0 + 2)^3\newlinef(0)=0×3×23f(0) = 0 \times 3 \times 2^3\newlinef(0)=0×3×8f(0) = 0 \times 3 \times 8\newlinef(0)=0f(0) = 0
  4. Final result: Since the result of f(0)f(0) is 00, the yy-coordinate of the yy-intercept of the polynomial function f(x)f(x) is 00.

More problems from Find the roots of factored polynomials