Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Solve quadratic inequalities
Which value of
x
x
x
satisfies the equation
4
3
(
x
+
5
4
)
=
11
\frac{4}{3}\left(x+\frac{5}{4}\right)=11
3
4
(
x
+
4
5
)
=
11
?
\newline
−
6
-6
−
6
\newline
7
7
7
\newline
6
6
6
\newline
−
7
-7
−
7
Get tutor help
Find the value of
x
x
x
in the equation below.
\newline
x
6
=
9
\frac{x}{6}=9
6
x
=
9
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
y
\mathrm{y}
y
.
\newline
y
6
=
−
9
\frac{y}{6}=-9
6
y
=
−
9
\newline
Answer:
y
=
y=
y
=
Get tutor help
If
a
3
b
c
2
<
0
a^3bc^2 < 0
a
3
b
c
2
<
0
, which of the following must be correct?
\newline
(A)
a
<
0
&
c
<
0
a < 0 \& c < 0
a
<
0&
c
<
0
\newline
(B)
b
<
0
&
c
<
0
b < 0 \& c < 0
b
<
0&
c
<
0
\newline
(C)
a
<
0
&
b
>
0
a < 0 \& b > 0
a
<
0&
b
>
0
\newline
(D)
a
<
0
&
b
>
0
a < 0 \& b > 0
a
<
0&
b
>
0
or
a
>
0
&
b
<
0
a > 0 \& b < 0
a
>
0&
b
<
0
Get tutor help
If
a
3
b
c
2
<
0
a^3bc^2 < 0
a
3
b
c
2
<
0
, which of the following must be correct?
\newline
(A)
a
<
0
&
c
<
0
a < 0 \& c < 0
a
<
0&
c
<
0
\newline
(B)
b
<
0
&
c
<
0
b < 0 \& c < 0
b
<
0&
c
<
0
\newline
(C)
a
<
0
&
b
>
0
a < 0 \& b > 0
a
<
0&
b
>
0
\newline
(D)
a
<
0
&
b
>
0
a < 0 \& b > 0
a
<
0&
b
>
0
or
a
>
0
&
b
<
0
a > 0 \& b < 0
a
>
0&
b
<
0
Get tutor help
If
x
+
7
x+7
x
+
7
is a factor of the polynomial function
g
g
g
, what is the value of
g
(
7
)
g(7)
g
(
7
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
7
-7
−
7
\newline
(B)
0
0
0
\newline
(C)
14
14
14
\newline
(D) Cannot be determined from the given information
Get tutor help
If
x
−
9
x-9
x
−
9
is a factor of the polynomial function
f
f
f
, what is the value of
f
(
9
)
f(9)
f
(
9
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
9
-9
−
9
\newline
(B)
0
0
0
\newline
(C)
9
9
9
\newline
(D) Cannot be determined from the given information
Get tutor help
Let
f
(
x
)
=
−
4
x
3
+
6
x
2
−
5
f(x)=-4 x^{3}+6 x^{2}-5
f
(
x
)
=
−
4
x
3
+
6
x
2
−
5
.
\newline
The absolute minimum value of
f
f
f
over the closed interval
−
2
≤
x
≤
3
-2 \leq x \leq 3
−
2
≤
x
≤
3
occurs at what
x
x
x
value?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
2
-2
−
2
\newline
(B)
1
1
1
\newline
(C)
3
3
3
\newline
(D)
0
0
0
Get tutor help
Let
g
(
x
)
=
x
3
+
1
g(x)=x^{3}+1
g
(
x
)
=
x
3
+
1
.
\newline
The absolute minimum value of
g
g
g
over the closed interval
−
2
≤
x
≤
3
-2 \leq x \leq 3
−
2
≤
x
≤
3
occurs at what
x
x
x
value?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
2
-2
−
2
\newline
(B)
0
0
0
\newline
(C)
3
3
3
\newline
(D)
−
7
-7
−
7
Get tutor help
Let
f
(
x
)
=
−
4
x
3
+
6
x
2
−
5
f(x)=-4 x^{3}+6 x^{2}-5
f
(
x
)
=
−
4
x
3
+
6
x
2
−
5
.
\newline
The absolute minimum value of
f
f
f
over the closed interval
−
2
≤
x
≤
3
-2 \leq x \leq 3
−
2
≤
x
≤
3
occurs at what
x
x
x
value?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
2
-2
−
2
\newline
(B)
3
3
3
\newline
(C)
0
0
0
\newline
(D)
1
1
1
Get tutor help
Let
f
(
x
)
=
−
4
x
3
+
6
x
2
+
1
f(x)=-4 x^{3}+6 x^{2}+1
f
(
x
)
=
−
4
x
3
+
6
x
2
+
1
.
\newline
What is the absolute minimum value of
f
f
f
over the closed interval
−
4
≤
x
≤
3
-4 \leq x \leq 3
−
4
≤
x
≤
3
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
53
-53
−
53
\newline
(B)
−
353
-353
−
353
\newline
(C)
−
78
-78
−
78
\newline
(D)
3
3
3
Get tutor help
Let
g
(
x
)
=
x
3
+
1
g(x)=x^{3}+1
g
(
x
)
=
x
3
+
1
.
\newline
The absolute minimum value of
g
g
g
over the closed interval
−
2
≤
x
≤
3
-2 \leq x \leq 3
−
2
≤
x
≤
3
occurs at what
x
x
x
value?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
7
-7
−
7
\newline
(B)
3
3
3
\newline
(C)
−
2
-2
−
2
\newline
(D)
0
0
0
Get tutor help
Water is leaking out of a container at a rate of
−
50
(
t
−
10
)
-50(t-10)
−
50
(
t
−
10
)
milliliters per hour (where
t
t
t
is the number of hours).
\newline
How many milliliters of water leak out of the container between
t
=
0
t=0
t
=
0
and
t
=
2
t=2
t
=
2
?
\newline
Choose
1
1
1
answer:
\newline
(A)
100
\mathbf{1 0 0}
100
\newline
(B)
400
400
400
\newline
(C)
500
500
500
\newline
(D)
900
900
900
Get tutor help
Evaluate
2
−
(
−
4
)
+
(
−
y
)
2-(-4)+(-y)
2
−
(
−
4
)
+
(
−
y
)
where
y
=
7
y=7
y
=
7
.
Get tutor help
Let
f
(
x
)
=
4
x
−
3
f(x)=\sqrt{4 x-3}
f
(
x
)
=
4
x
−
3
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
f
f
f
on the interval
1
≤
x
≤
3
1 \leq x \leq 3
1
≤
x
≤
3
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
1.5
\mathbf{1 . 5}
1.5
\newline
(B)
1.75
\mathbf{1 . 7 5}
1.75
\newline
(C)
2
2
2
\newline
(D)
2
2
2
.
25
25
25
Get tutor help
Let
g
(
x
)
=
2
x
−
4
g(x)=\sqrt{2 x-4}
g
(
x
)
=
2
x
−
4
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
g
g
g
on the interval
2
≤
x
≤
10
2 \leq x \leq 10
2
≤
x
≤
10
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
.
25
25
25
\newline
(B)
3
3
3
.
75
75
75
\newline
(C)
4
4
4
\newline
(D)
6
6
6
Get tutor help
Let
f
(
x
)
=
2
x
+
1
f(x)=\sqrt{2 x+1}
f
(
x
)
=
2
x
+
1
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
f
f
f
on the interval
4
≤
x
≤
12
4 \leq x \leq 12
4
≤
x
≤
12
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
1
1
.
5
5
5
\newline
(C)
4
4
4
\newline
(D)
7
7
7
.
5
5
5
Get tutor help
Let
g
(
x
)
=
tan
(
x
)
g(x)=\tan (x)
g
(
x
)
=
tan
(
x
)
.
\newline
Can we use the intermediate value theorem to say the equation
g
(
x
)
=
0
g(x)=0
g
(
x
)
=
0
has a solution where
π
4
≤
x
≤
3
π
4
\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}
4
π
≤
x
≤
4
3
π
?
\newline
Choose
1
1
1
answer:
\newline
(A) No, since the function is not continuous on that interval.
\newline
(B) No, since
0
0
0
is not between
g
(
π
4
)
g\left(\frac{\pi}{4}\right)
g
(
4
π
)
and
g
(
3
π
4
)
g\left(\frac{3 \pi}{4}\right)
g
(
4
3
π
)
.
\newline
(C) Yes, both conditions for using the intermediate value theorem have been met.
Get tutor help
Let
g
(
x
)
=
cos
(
x
)
g(x)=\cos (x)
g
(
x
)
=
cos
(
x
)
.
\newline
Can we use the intermediate value theorem to say the equation
g
(
x
)
=
0.8
g(x)=0.8
g
(
x
)
=
0.8
has a solution where
0
≤
x
≤
π
2
0 \leq x \leq \frac{\pi}{2}
0
≤
x
≤
2
π
?
\newline
Choose
1
1
1
answer:
\newline
(A) No, since the function is not continuous on that interval.
\newline
(B) No, since
0
0
0
.
8
8
8
is not between
g
(
0
)
g(0)
g
(
0
)
and
g
(
π
2
)
g\left(\frac{\pi}{2}\right)
g
(
2
π
)
.
\newline
(C) Yes, both conditions for using the intermediate value theorem have been met.
Get tutor help
Let
f
f
f
be a continuous function on the closed interval
[
−
5
,
0
]
[-5,0]
[
−
5
,
0
]
, where
f
(
−
5
)
=
0
f(-5)=0
f
(
−
5
)
=
0
and
f
(
0
)
=
5
f(0)=5
f
(
0
)
=
5
.
\newline
Which of the following is guaranteed by the Intermediate Value Theorem?
\newline
Choose
1
1
1
answer:
\newline
(A)
f
(
c
)
=
−
2
f(c)=-2
f
(
c
)
=
−
2
for at least one
c
c
c
between
0
0
0
and
5
5
5
\newline
(B)
f
(
c
)
=
2
f(c)=2
f
(
c
)
=
2
for at least one
c
c
c
between
0
0
0
and
5
5
5
\newline
(C)
f
(
c
)
=
−
2
f(c)=-2
f
(
c
)
=
−
2
for at least one
c
c
c
between
−
5
-5
−
5
and
0
0
0
\newline
(D)
f
(
c
)
=
2
f(c)=2
f
(
c
)
=
2
for at least one
c
c
c
between
−
5
-5
−
5
and
0
0
0
Get tutor help
Find
lim
x
→
2
x
4
−
4
x
3
+
4
x
2
x
−
2
\lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+4 x^{2}}{x-2}
lim
x
→
2
x
−
2
x
4
−
4
x
3
+
4
x
2
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
0
0
0
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Find
lim
x
→
4
2
−
4
x
−
12
x
−
4
\lim _{x \rightarrow 4} \frac{2-\sqrt{4 x-12}}{x-4}
lim
x
→
4
x
−
4
2
−
4
x
−
12
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
1
1
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Solve for
x
x
x
.
\newline
Your answer must be simplified.
\newline
x
−
9
≥
3
\frac{x}{-9} \geq 3
−
9
x
≥
3
Get tutor help
Solve for
x
x
x
.
\newline
Your answer must be simplified.
\newline
x
−
8
≥
−
5
\frac{x}{-8} \geq-5
−
8
x
≥
−
5
Get tutor help
The speed of sound is approximately
1
1
1
,
225
225
225
kilometers per hour. When an object travels faster than the speed of sound, it creates a sonic boom.
\newline
Write an inequality that describes
s
s
s
, the speeds at which a moving object creates a sonic boom. Enter your inequality without
a
a
a
thousands separator.
Get tutor help
lim
x
→
π
3
sin
(
x
)
=
?
\lim _{x \rightarrow \frac{\pi}{3}} \sin (x)=\text { ? }
x
→
3
π
lim
sin
(
x
)
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
3
2
\frac{\sqrt{3}}{2}
2
3
\newline
(C)
3
\sqrt{3}
3
\newline
(D) The limit doesn't exist.
Get tutor help
h
(
x
)
=
{
cos
(
x
)
for
x
<
π
sin
(
x
)
for
x
≥
π
h(x)=\left\{\begin{array}{ll} \cos (x) & \text { for } x<\pi \\ \sin (x) & \text { for } x \geq \pi \end{array}\right.
h
(
x
)
=
{
cos
(
x
)
sin
(
x
)
for
x
<
π
for
x
≥
π
\newline
Find
lim
x
→
π
+
h
(
x
)
\lim _{x \rightarrow \pi^{+}} h(x)
lim
x
→
π
+
h
(
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
0
0
0
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist.
Get tutor help
Find
lim
x
→
1
x
−
11
x
+
7
\lim _{x \rightarrow 1} \frac{x-11}{x+7}
lim
x
→
1
x
+
7
x
−
11
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
2
-2
−
2
\newline
(B)
−
5
4
-\frac{5}{4}
−
4
5
\newline
(C)
3
2
\frac{3}{2}
2
3
\newline
(D) The limit doesn't exist
Get tutor help
Find
lim
x
→
3
−
4
2
x
−
5
\lim _{x \rightarrow 3} \frac{-4}{2 x-5}
lim
x
→
3
2
x
−
5
−
4
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
4
11
\frac{4}{11}
11
4
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Find
lim
x
→
2
x
+
2
x
−
2
\lim _{x \rightarrow 2} \frac{x+2}{x-2}
lim
x
→
2
x
−
2
x
+
2
.
\newline
Choose
1
1
1
answer:
\newline
(A)
4
4
4
\newline
(B)
1
1
1
\newline
(C)
0
0
0
\newline
(D) The limit doesn't exist
Get tutor help
Find
lim
x
→
−
1
x
2
−
9
x
2
+
1
\lim _{x \rightarrow-1} \frac{x^{2}-9}{x^{2}+1}
lim
x
→
−
1
x
2
+
1
x
2
−
9
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
−
5
-5
−
5
\newline
(C)
−
9
-9
−
9
\newline
(D) The limit doesn't exist
Get tutor help
g
(
x
)
=
{
1
x
for
x
<
−
1
1
+
2
x
for
−
1
≤
x
≤
0
g(x)=\left\{\begin{array}{ll}\frac{1}{x} & \text { for } x<-1 \\ 1+2 x & \text { for }-1 \leq x \leq 0\end{array}\right.
g
(
x
)
=
{
x
1
1
+
2
x
for
x
<
−
1
for
−
1
≤
x
≤
0
\newline
Find
lim
x
→
−
1
g
(
x
)
\lim _{x \rightarrow-1} g(x)
lim
x
→
−
1
g
(
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
1
1
1
\newline
(C)
3
3
3
\newline
(D) The limit doesn't exist.
Get tutor help
32
−
7
x
≤
11
32-7 x \leq 11
32
−
7
x
≤
11
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
≥
3
x \geq 3
x
≥
3
\newline
(B)
x
≤
3
x \leq 3
x
≤
3
\newline
(C)
x
≥
−
43
7
x \geq-\frac{43}{7}
x
≥
−
7
43
\newline
(D)
x
≥
−
3
x \geq-3
x
≥
−
3
Get tutor help
−
10
x
−
3
≥
8
x
+
4
-10 x-3 \geq 8 x+4
−
10
x
−
3
≥
8
x
+
4
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
A)
x
≤
−
7
18
x \leq-\frac{7}{18}
x
≤
−
18
7
\newline
(B)
x
≤
−
7
2
x \leq-\frac{7}{2}
x
≤
−
2
7
\newline
(C)
x
≤
−
1
18
x \leq-\frac{1}{18}
x
≤
−
18
1
\newline
(D)
x
≥
−
7
18
x \geq-\frac{7}{18}
x
≥
−
18
7
Get tutor help
−
12
x
<
−
72
-12 x<-72
−
12
x
<
−
72
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
6
x<6
x
<
6
\newline
(B)
x
>
6
x>6
x
>
6
\newline
(C)
x
<
1
6
x<\frac{1}{6}
x
<
6
1
\newline
(D)
x
>
1
6
x>\frac{1}{6}
x
>
6
1
Get tutor help
8
x
+
6
<
4
x
+
10
8 x+6<4 x+10
8
x
+
6
<
4
x
+
10
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
1
3
x<\frac{1}{3}
x
<
3
1
\newline
(B)
x
<
4
x<4
x
<
4
\newline
(C)
x
<
1
x<1
x
<
1
\newline
(D)
x
>
1
x>1
x
>
1
Get tutor help
6
x
−
2
<
2
x
+
3
6 x-2<2 x+3
6
x
−
2
<
2
x
+
3
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
5
4
x<\frac{5}{4}
x
<
4
5
\newline
(B)
x
>
5
4
x>\frac{5}{4}
x
>
4
5
\newline
(C)
x
<
1
4
x<\frac{1}{4}
x
<
4
1
\newline
(D)
x
<
5
8
x<\frac{5}{8}
x
<
8
5
Get tutor help
16
<
−
4
x
16<-4 x
16
<
−
4
x
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
−
4
x<-4
x
<
−
4
\newline
(B)
x
>
−
4
x>-4
x
>
−
4
\newline
(C)
x
<
−
1
4
x<-\frac{1}{4}
x
<
−
4
1
\newline
(D)
x
>
−
1
4
x>-\frac{1}{4}
x
>
−
4
1
Get tutor help
19
x
+
1
≥
3
x
19 x+1 \geq 3 x
19
x
+
1
≥
3
x
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
≥
1
16
x \geq \frac{1}{16}
x
≥
16
1
\newline
(B)
x
≥
−
1
22
x \geq-\frac{1}{22}
x
≥
−
22
1
\newline
(C)
x
≤
−
1
16
x \leq-\frac{1}{16}
x
≤
−
16
1
\newline
(D)
x
≥
−
1
16
x \geq-\frac{1}{16}
x
≥
−
16
1
Get tutor help
−
2
>
3
(
b
+
4
)
−
2
-2>\frac{3(b+4)}{-2}
−
2
>
−
2
3
(
b
+
4
)
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
b
<
−
3
b<-3
b
<
−
3
\newline
(B)
b
<
−
16
3
b<-\frac{16}{3}
b
<
−
3
16
\newline
(C)
b
>
−
8
3
b>-\frac{8}{3}
b
>
−
3
8
\newline
(D)
b
>
0
b>0
b
>
0
Get tutor help
Solve for
x
x
x
.
\newline
4
x
−
4
<
8
4 x-4<8 \quad
4
x
−
4
<
8
AND
9
x
+
5
>
23
\quad 9 x+5>23
9
x
+
5
>
23
\newline
Choose
1
1
1
answer:
\newline
(A)
2
<
x
<
3
2<x<3
2
<
x
<
3
\newline
(B)
x
<
2
x<2
x
<
2
or
x
>
3
x>3
x
>
3
\newline
(C) There are no solutions
\newline
D All values of
x
x
x
are solutions
Get tutor help
3
x
≤
7
3 x \leq 7
3
x
≤
7
\newline
Which of the following best describes the solutions to the inequality shown above?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
≤
3
7
x \leq \frac{3}{7}
x
≤
7
3
\newline
(B)
x
≥
3
7
x \geq \frac{3}{7}
x
≥
7
3
\newline
(C)
x
≤
7
3
x \leq \frac{7}{3}
x
≤
3
7
\newline
(D)
x
≥
7
3
x \geq \frac{7}{3}
x
≥
3
7
Get tutor help
−
9
>
2
x
-9>2 x
−
9
>
2
x
\newline
Which of the following best describes the solutions to the inequality shown above?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
−
9
2
x<-\frac{9}{2}
x
<
−
2
9
\newline
(B)
x
>
−
9
2
x>-\frac{9}{2}
x
>
−
2
9
\newline
(C)
x
<
−
2
9
x<-\frac{2}{9}
x
<
−
9
2
\newline
(D)
x
>
−
2
9
x>-\frac{2}{9}
x
>
−
9
2
Get tutor help
3
>
9
−
1
2
x
3>9-\frac{1}{2} x
3
>
9
−
2
1
x
\newline
What values of
x
x
x
satisfy the inequality?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
12
x<12
x
<
12
\newline
(B)
x
>
12
x>12
x
>
12
\newline
(C)
x
<
24
x<24
x
<
24
\newline
(D)
x
>
24
x>24
x
>
24
Get tutor help
7
>
2
x
−
3
7>2 x-3
7
>
2
x
−
3
\newline
What values of
x
x
x
satisfy the inequality?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
2
x<2
x
<
2
\newline
(B)
x
>
2
x>2
x
>
2
\newline
(C)
x
<
5
x<5
x
<
5
\newline
(D)
x
>
5
x>5
x
>
5
Get tutor help
3
x
−
8
≤
7
3 x-8 \leq 7
3
x
−
8
≤
7
\newline
What values of
x
x
x
satisfy the inequality?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
≤
−
1
3
x \leq-\frac{1}{3}
x
≤
−
3
1
\newline
(B)
x
≥
−
1
3
x \geq-\frac{1}{3}
x
≥
−
3
1
\newline
(C)
x
≤
5
x \leq 5
x
≤
5
\newline
(D)
x
≥
5
x \geq 5
x
≥
5
Get tutor help
−
3
2
x
+
5
<
7
-\frac{3}{2} x+5<7
−
2
3
x
+
5
<
7
\newline
What values of
x
x
x
satisfy the inequality?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
−
8
x<-8
x
<
−
8
\newline
(B)
x
>
−
3
x>-3
x
>
−
3
\newline
(C)
x
>
−
4
3
x>-\frac{4}{3}
x
>
−
3
4
\newline
(D)
x
>
8
x>8
x
>
8
Get tutor help
7
x
+
1
<
x
+
9
7x+1 < x+9
7
x
+
1
<
x
+
9
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
>
4
3
x > \frac{4}{3}
x
>
3
4
\newline
(B)
x
<
4
3
x < \frac{4}{3}
x
<
3
4
\newline
(C)
x
<
1
x < 1
x
<
1
\newline
(D)
x
<
5
3
x < \frac{5}{3}
x
<
3
5
Get tutor help
52
−
3
x
<
−
14
52-3x < -14
52
−
3
x
<
−
14
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
>
−
38
3
x > -\frac{38}{3}
x
>
−
3
38
\newline
(B)
x
>
38
3
x > \frac{38}{3}
x
>
3
38
\newline
(C)
x
<
22
x < 22
x
<
22
\newline
(D)
x
>
22
x > 22
x
>
22
Get tutor help
5
−
3
x
>
2
x
+
2
5-3x > 2x+2
5
−
3
x
>
2
x
+
2
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
7
5
x < \frac{7}{5}
x
<
5
7
\newline
(B)
x
<
3
x < 3
x
<
3
\newline
(C)
x
<
3
5
x < \frac{3}{5}
x
<
5
3
\newline
(D)
x
>
3
5
x > \frac{3}{5}
x
>
5
3
Get tutor help
Previous
1
...
2
3
4
Next