Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=sqrt(2x+1) and let 
c be the number that satisfies the Mean Value Theorem for 
f on the interval 
4 <= x <= 12.
What is 
c ?
Choose 1 answer:
(A) 0
(B) 1.5
(C) 4
(D) 7.5

Let f(x)=2x+1 f(x)=\sqrt{2 x+1} and let c c be the number that satisfies the Mean Value Theorem for f f on the interval 4x12 4 \leq x \leq 12 .\newlineWhat is c c ?\newlineChoose 11 answer:\newline(A) 00\newline(B) 11.55\newline(C) 44\newline(D) 77.55

Full solution

Q. Let f(x)=2x+1 f(x)=\sqrt{2 x+1} and let c c be the number that satisfies the Mean Value Theorem for f f on the interval 4x12 4 \leq x \leq 12 .\newlineWhat is c c ?\newlineChoose 11 answer:\newline(A) 00\newline(B) 11.55\newline(C) 44\newline(D) 77.55
  1. Understand Mean Value Theorem: Understand the Mean Value Theorem (MVT). The MVT states that if a function ff is continuous on the closed interval [a,b][a, b] and differentiable on the open interval (a,b)(a, b), then there exists at least one number cc in (a,b)(a, b) such that f(c)=f(b)f(a)baf'(c) = \frac{f(b) - f(a)}{b - a}.
  2. Apply MVT to Function: Apply the MVT to the function f(x)=2x+1f(x) = \sqrt{2x + 1} on the interval [4,12][4, 12].\newlineFirst, calculate f(4)f(4) and f(12)f(12).\newlinef(4)=24+1=9=3f(4) = \sqrt{2\cdot4 + 1} = \sqrt{9} = 3\newlinef(12)=212+1=25=5f(12) = \sqrt{2\cdot12 + 1} = \sqrt{25} = 5
  3. Calculate Difference Quotient: Calculate the difference quotient (f(b)f(a))/(ba)(f(b) - f(a)) / (b - a).(f(12)f(4))/(124)=(53)/(124)=2/8=1/4(f(12) - f(4)) / (12 - 4) = (5 - 3) / (12 - 4) = 2 / 8 = 1/4
  4. Find Derivative of f(x)f(x): Find the derivative of f(x)f(x).
    f(x)=ddx[2x+1]f'(x) = \frac{d}{dx} [\sqrt{2x + 1}]
    To differentiate 2x+1\sqrt{2x + 1}, use the chain rule.
    f(x)=122x+1ddx[2x+1]f'(x) = \frac{1}{2\sqrt{2x + 1}} \cdot \frac{d}{dx} [2x + 1]
    f(x)=122x+12f'(x) = \frac{1}{2\sqrt{2x + 1}} \cdot 2
    f(x)=12x+1f'(x) = \frac{1}{\sqrt{2x + 1}}
  5. Set Derivative Equal to Quotient: Set the derivative equal to the difference quotient and solve for cc.12c+1=14\frac{1}{\sqrt{2c + 1}} = \frac{1}{4}Cross-multiply to solve for cc.4=2c+14 = \sqrt{2c + 1}Square both sides to eliminate the square root.16=2c+116 = 2c + 1Subtract 11 from both sides.15=2c15 = 2cDivide by 22.c=152c = \frac{15}{2}c=7.5c = 7.5

More problems from Solve quadratic inequalities