Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr-1)(x^(2)-9)/(x^(2)+1).
Choose 1 answer:
(A) -4
(B) -5
(C) -9
(D) The limit doesn't exist

Find limx1x29x2+1 \lim _{x \rightarrow-1} \frac{x^{2}-9}{x^{2}+1} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 5-5\newline(C) 9-9\newline(D) The limit doesn't exist

Full solution

Q. Find limx1x29x2+1 \lim _{x \rightarrow-1} \frac{x^{2}-9}{x^{2}+1} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 5-5\newline(C) 9-9\newline(D) The limit doesn't exist
  1. Substitute x value: Substitute the value of xx approaching 1-1 into the function to see if the function is defined at that point.\newlinelimx1x29x2+1=(1)29(1)2+1\lim_{x \to -1}\frac{x^2 - 9}{x^2 + 1} = \frac{(-1)^2 - 9}{(-1)^2 + 1}
  2. Perform calculations: Perform the calculations for the numerator and the denominator separately.\newlineNumerator: (1)29=19=8(-1)^2 - 9 = 1 - 9 = -8\newlineDenominator: (1)2+1=1+1=2(-1)^2 + 1 = 1 + 1 = 2
  3. Find the limit: Divide the calculated numerator by the calculated denominator to find the limit.\newlineLimit: 8/2=4-8 / 2 = -4

More problems from Solve quadratic inequalities