Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which value of 
x satisfies the equation 
(4)/(3)(x+(5)/(4))=11 ?

-6
7
6

-7

Which value of x x satisfies the equation 43(x+54)=11 \frac{4}{3}\left(x+\frac{5}{4}\right)=11 ?\newline6 -6 \newline77\newline66\newline7 -7

Full solution

Q. Which value of x x satisfies the equation 43(x+54)=11 \frac{4}{3}\left(x+\frac{5}{4}\right)=11 ?\newline6 -6 \newline77\newline66\newline7 -7
  1. Isolate x Term: Isolate the term containing x.\newlineTo isolate the term with xx, we need to get rid of the fraction by multiplying both sides of the equation by the denominator on the left side, which is 33.\newline(43)(x+54)=11(\frac{4}{3})(x + \frac{5}{4}) = 11\newlineMultiply both sides by 33 to get:\newline4(x+54)=11×34(x + \frac{5}{4}) = 11 \times 3
  2. Multiply Right Side: Perform the multiplication on the right side of the equation.\newline11×3=3311 \times 3 = 33\newlineSo now we have:\newline4(x+54)=334(x + \frac{5}{4}) = 33
  3. Distribute 44: Distribute the 44 on the left side of the equation.\newline4×x=4x4 \times x = 4x\newline4×(54)=54 \times \left(\frac{5}{4}\right) = 5\newlineNow the equation looks like this:\newline4x+5=334x + 5 = 33
  4. Subtract 55: Subtract 55 from both sides to isolate the term with xx.\newline4x+55=3354x + 5 - 5 = 33 - 5\newlineThis simplifies to:\newline4x=284x = 28
  5. Divide by 44: Divide both sides by 44 to solve for x.\newline4x4=284\frac{4x}{4} = \frac{28}{4}\newlinex=7x = 7

More problems from Solve quadratic inequalities