Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr2)(x^(4)-4x^(3)+4x^(2))/(x-2).
Choose 1 answer:
(A) -4
(B) 0
(C) 4
(D) The limit doesn't exist

Find limx2x44x3+4x2x2 \lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+4 x^{2}}{x-2} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 00\newline(C) 44\newline(D) The limit doesn't exist

Full solution

Q. Find limx2x44x3+4x2x2 \lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+4 x^{2}}{x-2} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 00\newline(C) 44\newline(D) The limit doesn't exist
  1. Identify the form: Identify the form of the limit.\newlineWe need to find the limit of the function as xx approaches 22. Let's substitute x=2x = 2 into the function to see what form the limit takes.\newlinelimx2x44x3+4x2x2=24423+42222\lim_{x \to 2}\frac{x^4 - 4x^3 + 4x^2}{x - 2} = \frac{2^4 - 4\cdot2^3 + 4\cdot2^2}{2 - 2}\newline=1632+160= \frac{16 - 32 + 16}{0}\newline=00= \frac{0}{0}\newlineThis is an indeterminate form, which means we need to do further work to find the limit.
  2. Factor the numerator: Factor the numerator.\newlineSince the direct substitution gives us an indeterminate form, we can try to factor the numerator to see if we can simplify the expression.\newlineThe numerator is a polynomial that seems to be a perfect square trinomial. Let's factor it:\newlinex44x3+4x2=(x2)222x2x+(2x)2x^4 - 4x^3 + 4x^2 = (x^2)^2 - 2\cdot 2\cdot x^2\cdot x + (2x)^2\newline=(x22x)2= (x^2 - 2x)^2\newlineNow we have:\newlinelimx2(x22x)2(x2)\lim_{x \to 2}\frac{(x^2 - 2x)^2}{(x - 2)}
  3. Factor out a term: Factor out a term of (x2)(x - 2) from the numerator.\newlineWe notice that (x22x)(x^2 - 2x) can be further factored to x(x2)x(x - 2). This will allow us to cancel out the (x2)(x - 2) term in the denominator.\newline(x22x)2=(x(x2))2(x^2 - 2x)^2 = (x(x - 2))^2\newline=x2(x2)2= x^2 * (x - 2)^2\newlineNow we have:\newlinelimx2x2(x2)2/(x2)\lim_{x \to 2}x^2 * (x - 2)^2 / (x - 2)
  4. Cancel the common term: Cancel the common term.\newlineWe can now cancel the common x2x - 2 term from the numerator and the denominator.\newlinelimx2x2(x2)2/(x2)=limx2x2(x2)\lim_{x \to 2}x^2 * (x - 2)^2 / (x - 2) = \lim_{x \to 2}x^2 * (x - 2)
  5. Evaluate the limit: Evaluate the limit.\newlineNow that we have simplified the expression, we can substitute x=2x = 2 to find the limit.\newlinelimx2x2(x2)=22(22)\lim_{x \to 2}x^2 * (x - 2) = 2^2 * (2 - 2)\newline=40= 4 * 0\newline=0= 0

More problems from Solve quadratic inequalities