Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

6x-2 < 2x+3
Which of the following best describes the solutions to the inequality shown?
Choose 1 answer:
(A) 
x < (5)/(4)
(B) 
x > (5)/(4)
(C) 
x < (1)/(4)
(D) 
x < (5)/(8)

6 x-2<2 x+3 \newlineWhich of the following best describes the solutions to the inequality shown?\newlineChoose 11 answer:\newline(A) x<\frac{5}{4} \newline(B) x>\frac{5}{4} \newline(C) x<\frac{1}{4} \newline(D) x<\frac{5}{8}

Full solution

Q. 6x2<2x+3 6 x-2<2 x+3 \newlineWhich of the following best describes the solutions to the inequality shown?\newlineChoose 11 answer:\newline(A) x<54 x<\frac{5}{4} \newline(B) x>54 x>\frac{5}{4} \newline(C) x<14 x<\frac{1}{4} \newline(D) x<58 x<\frac{5}{8}
  1. Isolate variable term: Isolate the variable term on one side of the inequality.\newlineSubtract 2x2x from both sides of the inequality to get:\newline6x - 2 - 2x < 2x + 3 - 2x\newlineThis simplifies to:\newline4x - 2 < 3
  2. Addition to isolate x: Isolate the variable xx on one side by adding 22 to both sides of the inequality.4x - 2 + 2 < 3 + 2This simplifies to:4x < 5
  3. Divide to solve for x: Divide both sides of the inequality by 44 to solve for x.\newline\frac{4x}{4} < \frac{5}{4}\newlineThis simplifies to:\newlinex < \frac{5}{4}

More problems from Solve quadratic inequalities