Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr4)(2-sqrt(4x-12))/(x-4).
Choose 1 answer:
(A) 2
(B) 1
(C) -1
(D) The limit doesn't exist

Find limx424x12x4 \lim _{x \rightarrow 4} \frac{2-\sqrt{4 x-12}}{x-4} .\newlineChoose 11 answer:\newline(A) 22\newline(B) 11\newline(C) 1-1\newline(D) The limit doesn't exist

Full solution

Q. Find limx424x12x4 \lim _{x \rightarrow 4} \frac{2-\sqrt{4 x-12}}{x-4} .\newlineChoose 11 answer:\newline(A) 22\newline(B) 11\newline(C) 1-1\newline(D) The limit doesn't exist
  1. Check Indeterminate Form: Substitute the value of x approaching 44 into the limit expression to see if it results in an indeterminate form.\newlinelimx424x12x4 \lim_{x \to 4} \frac{2 - \sqrt{4x - 12}}{x - 4} \newlineSubstituting x = 44 gives us:\newline24(4)1244=216120=220=00 \frac{2 - \sqrt{4(4) - 12}}{4 - 4} = \frac{2 - \sqrt{16 - 12}}{0} = \frac{2 - 2}{0} = \frac{0}{0} \newlineThis is an indeterminate form, so we need to use algebraic manipulation to simplify the expression.
  2. Multiply by Conjugate: Multiply the numerator and denominator by the conjugate of the numerator to rationalize the expression.\newlineThe conjugate of 22 - \sqrt{44x - 1212} is 22 + \sqrt{44x - 1212}. We multiply the numerator and denominator by this conjugate:\newlinelimx4(24x12)(2+4x12)(x4)(2+4x12) \lim_{x \to 4} \frac{(2 - \sqrt{4x - 12})(2 + \sqrt{4x - 12})}{(x - 4)(2 + \sqrt{4x - 12})}
  3. Apply Difference of Squares: Apply the difference of squares formula to the numerator.\newline(24x12)(2+4x12)=22(4x12)2=4(4x12) (2 - \sqrt{4x - 12})(2 + \sqrt{4x - 12}) = 2^2 - (\sqrt{4x - 12})^2 = 4 - (4x - 12) \newlineSimplify the numerator:\newline44x+12=164x 4 - 4x + 12 = 16 - 4x \newlineNow the limit expression is:\newlinelimx4164x(x4)(2+4x12) \lim_{x \to 4} \frac{16 - 4x}{(x - 4)(2 + \sqrt{4x - 12})}
  4. Factor Out 4-4: Factor out 4-4 from the numerator to cancel out the (x - 44) term in the denominator.\newlinelimx44(x4)(x4)(2+4x12) \lim_{x \to 4} \frac{-4(x - 4)}{(x - 4)(2 + \sqrt{4x - 12})} \newlineNow we can cancel out the (x - 44) terms:\newlinelimx442+4x12 \lim_{x \to 4} \frac{-4}{2 + \sqrt{4x - 12}}
  5. Substitute and Simplify: Substitute x = 44 into the simplified limit expression.\newlinelimx442+4x12=42+4(4)12=42+1612=42+2=44=1 \lim_{x \to 4} \frac{-4}{2 + \sqrt{4x - 12}} = \frac{-4}{2 + \sqrt{4(4) - 12}} = \frac{-4}{2 + \sqrt{16 - 12}} = \frac{-4}{2 + 2} = \frac{-4}{4} = -1

More problems from Solve quadratic inequalities