Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-(3)/(2)x+5 < 7
What values of 
x satisfy the inequality?
Choose 1 answer:
(A) 
x < -8
(B) 
x > -3
(c) 
x > -(4)/(3)
(D) 
x > 8

-\frac{3}{2} x+5<7 \newlineWhat values of x x satisfy the inequality?\newlineChoose 11 answer:\newline(A) x<-8 \newline(B) x>-3 \newline(C) x>-\frac{4}{3} \newline(D) x>8

Full solution

Q. 32x+5<7 -\frac{3}{2} x+5<7 \newlineWhat values of x x satisfy the inequality?\newlineChoose 11 answer:\newline(A) x<8 x<-8 \newline(B) x>3 x>-3 \newline(C) x>43 x>-\frac{4}{3} \newline(D) x>8 x>8
  1. Isolate the term: Isolate the term containing xx on one side of the inequality.\newlineSubtract 55 from both sides of the inequality -\frac{3}{2}x + 5 < 7.\newline-\frac{3}{2}x + 5 - 5 < 7 - 5\newline-\frac{3}{2}x < 2
  2. Solve for x: Solve for x by dividing both sides of the inequality by (3)/(2)-(3)/(2).\newlineRemember that dividing by a negative number reverses the inequality sign.\newlinex > 2 / (-(3)/(2))\newlinex > 2 \cdot (-2/3)\newlinex > -4/3
  3. Compare the solution: Compare the solution to the answer choices.\newlineThe solution x > -\frac{4}{3} matches with choice (C) x > -\left(\frac{4}{3}\right).

More problems from Solve quadratic inequalities