Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Power rule
The graph of
y
=
40
(
1.15
)
x
y=40(1.15)^{x}
y
=
40
(
1.15
)
x
is shown. Which of the following statements about the graph is true?
\newline
Choose
1
1
1
answer:
\newline
(A) As
x
x
x
increases,
y
y
y
increases at an increasing rate.
\newline
(B) As
x
x
x
increases,
y
y
y
increases at a decreasing rate.
\newline
(C) As
x
x
x
increases,
y
y
y
decreases at an increasing rate.
\newline
(D) As
x
x
x
increases,
y
y
y
decreases at a decreasing rate.
Get tutor help
Let
f
(
x
)
=
x
+
1
x
⋅
e
x
+
e
x
f(x) = \frac{x + 1}{x \cdot e^x + e^x}
f
(
x
)
=
x
⋅
e
x
+
e
x
x
+
1
when
x
≠
−
1
x \neq -1
x
=
−
1
.
Get tutor help
\newline
Find the vertical and horizontal asymptotes of the function:
\newline
f
(
x
)
=
(
2
x
−
1
)
(
3
x
+
1
)
(
x
−
2
)
(
x
+
4
)
f(x)=\frac{(2 x-1)(3 x+1)}{(x-2)(x+4)}
f
(
x
)
=
(
x
−
2
)
(
x
+
4
)
(
2
x
−
1
)
(
3
x
+
1
)
\newline
The fields below accept a list of numbers or formulas separated by semicolons (e.g.
2
;
4
;
6
2 ; 4 ; 6
2
;
4
;
6
or
x
+
1
;
x
−
1
)
x+1 ; x-1)
x
+
1
;
x
−
1
)
. The order of the list does not matter.
\newline
Vertical asymptotes:
\newline
x
=
x=
x
=
\newline
Horizontal asymptotes:
\newline
y
=
y=
y
=
\newline
Get tutor help
4
4
4
y
−
3
-3
−
3
x=
40
40
40
\newline
4
4
4
y=
3
3
3
x
−
30
-30
−
30
\newline
Which of the following accurately describes all solutions to the system of equations shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
=
0
x=0
x
=
0
and
y
=
0
y=0
y
=
0
\newline
(B)
x
=
5
3
x=\frac{5}{3}
x
=
3
5
and
y
=
45
4
y=\frac{45}{4}
y
=
4
45
\newline
(C) There are infinite solutions to the system.
\newline
(D) There are no solutions to the system.
Get tutor help
Simplify. Assume all variables are positive.
\newline
w
3
2
w
5
2
\frac{w^{\frac{3}{2}}}{w^{\frac{5}{2}}}
w
2
5
w
2
3
\newline
\newline
Write your answer in the form
A
A
A
or
A
B
\frac{A}{B}
B
A
, where
A
A
A
and
B
B
B
are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.
\newline
______
\newline
Get tutor help
Rewrite the expression without using a negative exponent.
\newline
1
−
2
y
−
2
\frac{1}{-2y^{-2}}
−
2
y
−
2
1
\newline
Simplify your answer as much as possible.
Get tutor help
Which of the following equations represent functions? Assume
x
x
x
is the input and
y
y
y
is the output.
\newline
Multi-select Choices:
\newline
(A)
x
=
−
1
x = -1
x
=
−
1
\newline
(B)
y
=
x
y = x
y
=
x
\newline
(C)
y
=
1
y = 1
y
=
1
\newline
(D)
x
+
y
=
1
x + y = 1
x
+
y
=
1
\newline
(E)
x
=
0
x = 0
x
=
0
Get tutor help
Which of the equations are true identities?
\newline
A.
(
a
+
b
)
(
2
a
+
1
)
=
a
(
2
a
+
2
b
+
1
)
(a+b)(2 a+1)=a(2 a+2 b+1)
(
a
+
b
)
(
2
a
+
1
)
=
a
(
2
a
+
2
b
+
1
)
\newline
B.
(
n
+
2
)
2
−
n
2
=
4
(
n
+
1
)
(n+2)^{2}-n^{2}=4(n+1)
(
n
+
2
)
2
−
n
2
=
4
(
n
+
1
)
\newline
Choose
1
1
1
answer:
\newline
(A) Only A
\newline
(B) Only B
\newline
(C) Both A and B
\newline
(D) Neither A nor B
Get tutor help
Which of the equations are true identities?
\newline
A.
(
x
2
+
2
y
)
(
x
2
−
3
y
)
=
x
4
−
6
y
2
\left(x^{2}+2 y\right)\left(x^{2}-3 y\right)=x^{4}-6 y^{2}
(
x
2
+
2
y
)
(
x
2
−
3
y
)
=
x
4
−
6
y
2
\newline
B.
k
3
−
r
3
=
(
k
2
+
r
)
(
k
−
r
2
)
k^{3}-r^{3}=\left(k^{2}+r\right)\left(k-r^{2}\right)
k
3
−
r
3
=
(
k
2
+
r
)
(
k
−
r
2
)
\newline
Choose
1
1
1
answer:
\newline
(A) Only A
\newline
(B) Only B
\newline
(C) Both A and B
\newline
(D) Neither A nor B
Get tutor help
Which of the equations are true identities?
\newline
A.
n
(
n
−
2
)
(
n
+
2
)
=
n
3
−
4
n
n(n-2)(n+2)=n^{3}-4 n
n
(
n
−
2
)
(
n
+
2
)
=
n
3
−
4
n
\newline
B.
(
x
+
1
)
2
−
2
x
+
y
2
=
x
2
+
y
2
+
1
(x+1)^{2}-2 x+y^{2}=x^{2}+y^{2}+1
(
x
+
1
)
2
−
2
x
+
y
2
=
x
2
+
y
2
+
1
\newline
Choose
1
1
1
answer:
\newline
(A) Only A
\newline
(B) Only B
\newline
(C) Both A and B
\newline
(D) Neither A nor B
Get tutor help
How does
h
(
x
)
=
1
0
x
h(x) = 10^x
h
(
x
)
=
1
0
x
change over the interval from
x
=
5
x = 5
x
=
5
to
x
=
6
x = 6
x
=
6
?
\newline
Choices:
\newline
(A)
h
(
x
)
h(x)
h
(
x
)
increases by
10
%
10\%
10%
\newline
(B)
h
(
x
)
h(x)
h
(
x
)
increases by
900
%
900\%
900%
\newline
(C)
h
(
x
)
h(x)
h
(
x
)
increases by
10
10
10
\newline
(D)
h
(
x
)
h(x)
h
(
x
)
decreases by
10
10
10
Get tutor help
- Let
g
g
g
be a function such that
g
(
5
)
=
7
g(5)=7
g
(
5
)
=
7
and
g
′
(
5
)
=
−
2
g^{\prime}(5)=-2
g
′
(
5
)
=
−
2
.
\newline
- Let
h
h
h
be the function
h
(
x
)
=
x
h(x)=x
h
(
x
)
=
x
.
\newline
Evaluate
d
d
x
[
g
(
x
)
⋅
h
(
x
)
]
\frac{d}{d x}[g(x) \cdot h(x)]
d
x
d
[
g
(
x
)
⋅
h
(
x
)]
at
x
=
5
x=5
x
=
5
.
Get tutor help
Let
y
=
x
cos
(
x
)
y=\sqrt{x} \cos (x)
y
=
x
cos
(
x
)
.
\newline
Find
d
y
d
x
\frac{d y}{d x}
d
x
d
y
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
x
+
sin
(
x
)
-\frac{1}{\sqrt{x}}+\sin (x)
−
x
1
+
sin
(
x
)
\newline
(B)
cos
(
x
)
2
x
−
x
sin
(
x
)
\frac{\cos (x)}{2 \sqrt{x}}-\sqrt{x} \sin (x)
2
x
c
o
s
(
x
)
−
x
sin
(
x
)
\newline
(C)
−
2
x
cos
(
x
)
−
x
sin
(
x
)
-2 \sqrt{x} \cos (x)-\sqrt{x} \sin (x)
−
2
x
cos
(
x
)
−
x
sin
(
x
)
\newline
(D)
−
sin
(
x
)
x
-\frac{\sin (x)}{\sqrt{x}}
−
x
s
i
n
(
x
)
Get tutor help
Which statement is true about the value of the expression below?
\newline
(
−
2
3
)
−
2
(-2^{3})^{-2}
(
−
2
3
)
−
2
\newline
(A) It is between
0
0
0
and
1
1
1
.
\newline
(B) It is less than
−
1
-1
−
1
.
\newline
(C) It is between
−
1
-1
−
1
and
0
0
0
.
\newline
(D) It is greater than
1
1
1
.
Get tutor help
(
2
x
+
5
)
(
−
m
x
+
9
)
=
0
(2 x+5)(-m x+9)=0
(
2
x
+
5
)
(
−
m
x
+
9
)
=
0
\newline
In the given equation,
m
m
m
is a constant. If the equation has the solutions
x
=
−
5
2
x=-\frac{5}{2}
x
=
−
2
5
and
x
=
3
2
x=\frac{3}{2}
x
=
2
3
, what is the value of
m
m
m
?
\newline
□
\square
□
Get tutor help
Simplify. Assume all variables are positive.
\newline
b
7
4
b
11
4
⋅
b
7
4
\frac{b^{\frac{7}{4}}}{b^{\frac{11}{4}} \cdot b^{\frac{7}{4}}}
b
4
11
⋅
b
4
7
b
4
7
\newline
Write your answer in the form
A
A
A
or
A
B
\frac{A}{B}
B
A
, where
A
A
A
and
B
B
B
are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.
\newline
______
Get tutor help
Simplify. Assume all variables are positive.
\newline
b
8
3
b
4
3
⋅
b
2
3
\frac{b^{\frac{8}{3}}}{b^{\frac{4}{3}} \cdot b^{\frac{2}{3}}}
b
3
4
⋅
b
3
2
b
3
8
\newline
Write your answer in the form
A
A
A
or
A
B
\frac{A}{B}
B
A
, where
A
A
A
and
B
B
B
are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.
\newline
______
Get tutor help
Simplify. Assume all variables are positive.
\newline
u
11
4
u
7
4
⋅
u
5
4
\frac{u^{\frac{11}{4}}}{u^{\frac{7}{4}} \cdot u^{\frac{5}{4}}}
u
4
7
⋅
u
4
5
u
4
11
\newline
Write your answer in the form
A
A
A
or
A
B
\frac{A}{B}
B
A
, where
A
A
A
and
B
B
B
are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.
\newline
______
Get tutor help
Simplify. Assume all variables are positive.
\newline
r
3
4
r
5
4
\frac{r^{\frac{3}{4}}}{r^{\frac{5}{4}}}
r
4
5
r
4
3
\newline
Write your answer in the form
A
A
A
or
A
B
\frac{A}{B}
B
A
, where
A
A
A
and
B
B
B
are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.
\newline
______
Get tutor help
Simplify. Assume all variables are positive.
\newline
r
3
4
r
11
4
\frac{r^{\frac{3}{4}}}{r^{\frac{11}{4}}}
r
4
11
r
4
3
\newline
Write your answer in the form
A
A
A
or
A
B
\frac{A}{B}
B
A
, where
A
A
A
and
B
B
B
are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.
\newline
______
Get tutor help
Simplify.
\newline
(
2
m
2
3
m
−
1
)
2
\left(\frac{2 m^{2}}{3 m^{-1}}\right)^{2}
(
3
m
−
1
2
m
2
)
2
\newline
Write your answer using only positive exponents.
Get tutor help
Which of the following statements about the graph of
y
=
12
(
0.75
)
x
y=12(0.75)^{x}
y
=
12
(
0.75
)
x
is true?
\newline
Choose
1
1
1
answer:
\newline
(A) As
x
x
x
increases,
y
y
y
increases at an increasing rate.
\newline
(B) As
x
x
x
increases,
y
y
y
increases at a decreasing rate.
\newline
(C) As
x
x
x
increases,
y
y
y
decreases at an increasing rate.
\newline
(D) As
x
x
x
increases,
y
y
y
decreases at a decreasing rate.
Get tutor help
6
5
p
+
k
q
=
4
5
q
=
3
5
p
−
2
5
\frac{6}{5}p + kq = \frac{4}{5} \\ q = \frac{3}{5}p - \frac{2}{5}
5
6
p
+
k
q
=
5
4
q
=
5
3
p
−
5
2
\newline
Consider the system of equations, where
k
k
k
is a constant. For which value of
k
k
k
is there no
(
p
,
q
)
(p,q)
(
p
,
q
)
solutions?
Get tutor help
Express the given expression without logs, in simplest form. Assume all variables represent positive values.
\newline
(
e
−
2
ln
12
y
)
\left(e^{-2 \ln 12 \sqrt{y}}\right)
(
e
−
2
l
n
12
y
)
\newline
Answer:
Get tutor help
Express the given expression without logs, in simplest form. Assume all variables represent positive values.
\newline
(
1
2
log
12
(
10
w
)
)
\left(12^{\log _{12}(10 \sqrt{w})}\right)
(
1
2
l
o
g
12
(
10
w
)
)
\newline
Answer:
Get tutor help
Express the given expression without logs, in simplest form. Assume all variables represent positive values.
\newline
(
1
2
log
12
(
8
w
)
)
\left(12^{\log _{12}(8 \sqrt{w})}\right)
(
1
2
l
o
g
12
(
8
w
)
)
\newline
Answer:
Get tutor help
Express the given expression without logs, in simplest form. Assume all variables represent positive values.
\newline
(
4
log
4
(
5
y
)
)
\left(4^{\log _{4}(5 \sqrt{y})}\right)
(
4
l
o
g
4
(
5
y
)
)
\newline
Answer:
Get tutor help
Express the given expression without logs, in simplest form. Assume all variables represent positive values.
\newline
(
7
log
7
(
2
w
2
)
)
\left(7^{\log _{7}\left(2 w^{2}\right)}\right)
(
7
l
o
g
7
(
2
w
2
)
)
\newline
Answer:
Get tutor help
Rewrite the expression as a product of four linear factors:
\newline
(
8
x
2
+
9
x
)
2
−
13
(
8
x
2
+
9
x
)
−
14
\left(8 x^{2}+9 x\right)^{2}-13\left(8 x^{2}+9 x\right)-14
(
8
x
2
+
9
x
)
2
−
13
(
8
x
2
+
9
x
)
−
14
\newline
Answer:
Get tutor help
Rewrite the expression as a product of four linear factors:
\newline
(
5
x
2
−
12
x
)
2
−
2
(
5
x
2
−
12
x
)
−
63
\left(5 x^{2}-12 x\right)^{2}-2\left(5 x^{2}-12 x\right)-63
(
5
x
2
−
12
x
)
2
−
2
(
5
x
2
−
12
x
)
−
63
\newline
Answer:
Get tutor help
Rewrite the expression as a product of four linear factors:
\newline
(
12
x
2
+
13
x
)
2
+
4
(
12
x
2
+
13
x
)
+
3
\left(12 x^{2}+13 x\right)^{2}+4\left(12 x^{2}+13 x\right)+3
(
12
x
2
+
13
x
)
2
+
4
(
12
x
2
+
13
x
)
+
3
\newline
Answer:
Get tutor help
Rewrite the expression as a product of four linear factors:
\newline
(
12
x
2
+
5
x
)
2
−
9
(
12
x
2
+
5
x
)
+
14
\left(12 x^{2}+5 x\right)^{2}-9\left(12 x^{2}+5 x\right)+14
(
12
x
2
+
5
x
)
2
−
9
(
12
x
2
+
5
x
)
+
14
\newline
Answer:
Get tutor help
Prove the identity.
\newline
cot
2
x
csc
x
+
1
=
csc
x
−
1
\frac{\cot ^{2} x}{\csc x+1}=\csc x-1
csc
x
+
1
cot
2
x
=
csc
x
−
1
\newline
Note that each Statement must be based on a Rule chosen from the Rule menu. To se the right of the Rule.
\newline
Statement
Get tutor help
Find a formula for the inverse of the following function, if possible.
\newline
G
(
x
)
=
4
x
+
2
5
G(x)=\sqrt[5]{4 x+2}
G
(
x
)
=
5
4
x
+
2
Get tutor help
We want to factor the following expression:
\newline
(
x
+
1
)
2
−
4
y
2
(x+1)^{2}-4y^{2}
(
x
+
1
)
2
−
4
y
2
\newline
Which pattern can we use to factor the expression?
\newline
U
U
U
and
V
V
V
are either constant integers or single-variable expressions.
\newline
Choose
1
1
1
answer:
\newline
(A)
(
U
+
V
)
2
(U+V)^{2}
(
U
+
V
)
2
or
(
U
−
V
)
2
(U-V)^{2}
(
U
−
V
)
2
\newline
(B)
(
U
+
V
)
(
U
−
V
)
(U+V)(U-V)
(
U
+
V
)
(
U
−
V
)
\newline
(C) We can't use any of the patterns.
Get tutor help
4
x
+
a
(
3
x
+
4
)
(
x
+
1
)
−
5
6
x
+
8
=
b
c
(
x
+
1
)
\frac{4 x+a}{(3 x+4)(x+1)}-\frac{5}{6 x+8}=\frac{b}{c(x+1)}
(
3
x
+
4
)
(
x
+
1
)
4
x
+
a
−
6
x
+
8
5
=
c
(
x
+
1
)
b
\newline
The given equation is true for all
x
>
−
1
x>-1
x
>
−
1
, where
a
,
b
a, b
a
,
b
, and
c
c
c
are nonzero constants. Which of the following must be an integer?
Get tutor help
If
y
=
(
x
−
1
)
(
x
+
5
)
y=(x-1)(x+5)
y
=
(
x
−
1
)
(
x
+
5
)
is graphed in the
x
y
xy
x
y
-plane, which of the following characteristics of the graph is displayed as a constant in the equation?
Get tutor help
(
3
y
−
2
)
(
y
+
a
)
=
3
y
2
+
b
(3y-2)(y+a)=3y^{2}+b
(
3
y
−
2
)
(
y
+
a
)
=
3
y
2
+
b
?
\newline
If the given equation is true for all values of
y
y
y
, where
a
a
a
and
b
b
b
are constants, which of the following is the value of
b
b
b
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
38
-38
−
38
\newline
(B)
12
12
12
\newline
(C)
34
34
34
\newline
(D)
36
36
36
Get tutor help
4
y
−
3
x
=
40
4y-3x=40
4
y
−
3
x
=
40
\newline
4
y
=
3
x
−
30
4y=3x-30
4
y
=
3
x
−
30
\newline
Which of the following accurately describes all solutions to the system of equations shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
=
0
x=0
x
=
0
and
y
=
0
y=0
y
=
0
\newline
(B)
x
=
5
3
x=\frac{5}{3}
x
=
3
5
and
y
=
45
4
y=\frac{45}{4}
y
=
4
45
\newline
(C) There are infinite solutions to the system.
\newline
(D) There are no solutions to the system.
Get tutor help
The equation
y
=
30
(
1
2
)
x
y=30\left(\frac{1}{2}\right)^x
y
=
30
(
2
1
)
x
is graphed in the
x
y
xy
x
y
-plane. Which of the following statements about the graph is true?
\newline
Choose
1
1
1
answer:
\newline
(A) As
x
x
x
increases,
y
y
y
increases at an increasing rate.
\newline
(B) As
x
x
x
increases,
y
y
y
increases at a decreasing rate.
\newline
(C) As
x
x
x
increases,
y
y
y
decreases at an increasing rate.
\newline
(D) As
x
x
x
increases,
y
y
y
decreases at a decreasing rate.
Get tutor help
If
y
=
38
(
1.04
)
x
y=38(1.04)^x
y
=
38
(
1.04
)
x
is graphed in the
x
y
xy
x
y
-plane, which of the following characteristics of the graph is displayed as a constant or coefficient in the equation?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
x
x
-intercept
\newline
(B)
y
y
y
-intercept
\newline
(C) Slope
\newline
(D) The value
y
y
y
approaches as
x
x
x
becomes very large
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
−
7
ln
x
3
x
38
+
5
x
38
\lim _{x \rightarrow \infty} \frac{-7 \ln x}{3 x^{38}+5 x^{38}}
x
→
∞
lim
3
x
38
+
5
x
38
−
7
ln
x
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
−
6
log
5
x
+
x
89
x
18
+
5
x
\lim _{x \rightarrow \infty} \frac{-6 \log _{5} x+x^{89}}{x^{18}+5^{x}}
x
→
∞
lim
x
18
+
5
x
−
6
lo
g
5
x
+
x
89
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
4
e
x
−
x
34
\lim _{x \rightarrow \infty} \frac{4 e^{x}}{-x^{34}}
x
→
∞
lim
−
x
34
4
e
x
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
x
10
−
2
x
10
−
8
log
3
x
\lim _{x \rightarrow \infty} \frac{x^{10}}{-2 x^{10}-8 \log _{3} x}
x
→
∞
lim
−
2
x
10
−
8
lo
g
3
x
x
10
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
x
19
2
x
19
−
10
e
x
\lim _{x \rightarrow \infty} \frac{x^{19}}{2 x^{19}-10 e^{x}}
x
→
∞
lim
2
x
19
−
10
e
x
x
19
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
−
7
x
70
3
x
9
+
10
e
x
\lim _{x \rightarrow \infty} \frac{-7 x^{70}}{3 x^{9}+10 e^{x}}
x
→
∞
lim
3
x
9
+
10
e
x
−
7
x
70
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
x
2
+
x
68
x
68
\lim _{x \rightarrow \infty} \frac{x^{2}+x^{68}}{x^{68}}
x
→
∞
lim
x
68
x
2
+
x
68
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
x
76
2
(
2
)
x
+
3
x
76
\lim _{x \rightarrow \infty} \frac{x^{76}}{2(2)^{x}+3 x^{76}}
x
→
∞
lim
2
(
2
)
x
+
3
x
76
x
76
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
Which statement best describes the limit shown below?
\newline
lim
x
→
∞
x
14
x
73
\lim _{x \rightarrow \infty} \frac{x^{14}}{x^{73}}
x
→
∞
lim
x
73
x
14
\newline
The limit equals zero
\newline
The limit does not exist
\newline
The limit exists and does not equal zero
Get tutor help
1
2
3
Next