Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Find the vertical and horizontal asymptotes of the function:

f(x)=((2x-1)(3x+1))/((x-2)(x+4))
The fields below accept a list of numbers or formulas separated by semicolons (e.g. 
2;4;6 or 
x+1;x-1). The order of the list does not matter.
Vertical asymptotes:

x=
Horizontal asymptotes:

y=

◻

\newlineFind the vertical and horizontal asymptotes of the function:\newlinef(x)=(2x1)(3x+1)(x2)(x+4) f(x)=\frac{(2 x-1)(3 x+1)}{(x-2)(x+4)} \newlineThe fields below accept a list of numbers or formulas separated by semicolons (e.g. 2;4;6 2 ; 4 ; 6 or x+1;x1) x+1 ; x-1) . The order of the list does not matter.\newlineVertical asymptotes:\newlinex= x= \newlineHorizontal asymptotes:\newliney= y= \newline

Full solution

Q. \newlineFind the vertical and horizontal asymptotes of the function:\newlinef(x)=(2x1)(3x+1)(x2)(x+4) f(x)=\frac{(2 x-1)(3 x+1)}{(x-2)(x+4)} \newlineThe fields below accept a list of numbers or formulas separated by semicolons (e.g. 2;4;6 2 ; 4 ; 6 or x+1;x1) x+1 ; x-1) . The order of the list does not matter.\newlineVertical asymptotes:\newlinex= x= \newlineHorizontal asymptotes:\newliney= y= \newline
  1. Find Vertical Asymptotes: To find the vertical asymptotes, set the denominator equal to zero and solve for xx.(x2)(x+4)=0(x-2)(x+4) = 0x2=0 or x+4=0x-2 = 0 \text{ or } x+4 = 0x=2 or x=4x = 2 \text{ or } x = -4
  2. Compare Degrees for Horizontal Asymptotes: For the horizontal asymptotes, compare the degrees of the numerator and the denominator.\newlineDegree of numerator (2x1)(3x+1)=2(2x-1)(3x+1) = 2 (since it's a product of two first-degree polynomials).\newlineDegree of denominator (x2)(x+4)=2(x-2)(x+4) = 2 (same reason as above).
  3. Calculate Horizontal Asymptote: Since the degrees are the same, the horizontal asymptote is found by dividing the leading coefficients of the numerator and the denominator.\newlineLeading coefficient of numerator = 2×3=62 \times 3 = 6\newlineLeading coefficient of denominator = 1×1=11 \times 1 = 1\newlineHorizontal asymptote: y=61=6y = \frac{6}{1} = 6

More problems from Power rule