Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
- Let
g
g
g
be a function such that
g
(
5
)
=
7
g(5)=7
g
(
5
)
=
7
and
g
′
(
5
)
=
−
2
g^{\prime}(5)=-2
g
′
(
5
)
=
−
2
.
\newline
- Let
h
h
h
be the function
h
(
x
)
=
x
h(x)=x
h
(
x
)
=
x
.
\newline
Evaluate
d
d
x
[
g
(
x
)
⋅
h
(
x
)
]
\frac{d}{d x}[g(x) \cdot h(x)]
d
x
d
[
g
(
x
)
⋅
h
(
x
)]
at
x
=
5
x=5
x
=
5
.
View step-by-step help
Home
Math Problems
Algebra 2
Power rule
Full solution
Q.
- Let
g
g
g
be a function such that
g
(
5
)
=
7
g(5)=7
g
(
5
)
=
7
and
g
′
(
5
)
=
−
2
g^{\prime}(5)=-2
g
′
(
5
)
=
−
2
.
\newline
- Let
h
h
h
be the function
h
(
x
)
=
x
h(x)=x
h
(
x
)
=
x
.
\newline
Evaluate
d
d
x
[
g
(
x
)
⋅
h
(
x
)
]
\frac{d}{d x}[g(x) \cdot h(x)]
d
x
d
[
g
(
x
)
⋅
h
(
x
)]
at
x
=
5
x=5
x
=
5
.
Apply Product Rule:
Use the product rule for differentiation:
f
∗
g
f * g
f
∗
g
' = f' * g + f * g'.
Differentiate Functions:
Differentiate
g
(
x
)
g(x)
g
(
x
)
to get
g
′
(
x
)
g'(x)
g
′
(
x
)
and
h
(
x
)
h(x)
h
(
x
)
to get
h
′
(
x
)
h'(x)
h
′
(
x
)
.
\newline
Since
h
(
x
)
=
x
h(x) = x
h
(
x
)
=
x
,
h
′
(
x
)
=
1
h'(x) = 1
h
′
(
x
)
=
1
.
Evaluate Derivatives:
Evaluate
g
′
(
5
)
g'(5)
g
′
(
5
)
and
h
(
5
)
h(5)
h
(
5
)
using the given information.
\newline
g
′
(
5
)
=
−
2
g'(5) = -2
g
′
(
5
)
=
−
2
and
h
(
5
)
=
5
h(5) = 5
h
(
5
)
=
5
.
Apply Product Rule Formula:
Plug the values into the product rule formula.
\newline
(
d
d
x
)
[
g
(
x
)
∗
h
(
x
)
]
(\frac{d}{dx})[g(x)*h(x)]
(
d
x
d
)
[
g
(
x
)
∗
h
(
x
)]
at
x
=
5
x=5
x
=
5
=
g
′
(
5
)
∗
h
(
5
)
+
g
(
5
)
∗
h
′
(
5
)
g'(5) * h(5) + g(5) * h'(5)
g
′
(
5
)
∗
h
(
5
)
+
g
(
5
)
∗
h
′
(
5
)
.
Substitute Values:
Substitute the known values into the equation.
\newline
d
d
x
[
g
(
x
)
∗
h
(
x
)
]
\frac{d}{dx}[g(x)*h(x)]
d
x
d
[
g
(
x
)
∗
h
(
x
)]
at
x
=
5
x=5
x
=
5
=
(
−
2
)
(-2)
(
−
2
)
*
5
5
5
+
7
7
7
*
1
1
1
.
Perform Multiplication:
Perform the multiplication.
(
d
)
/
(
d
x
)
[
g
(
x
)
∗
h
(
x
)
]
(d)/(dx)[g(x)*h(x)]
(
d
)
/
(
d
x
)
[
g
(
x
)
∗
h
(
x
)]
at
x
=
5
x=5
x
=
5
=
−
10
+
7
-10 + 7
−
10
+
7
.
Add Results:
Add the results to get the final answer.
\newline
d
d
x
[
g
(
x
)
⋅
h
(
x
)
]
\frac{d}{dx}[g(x)\cdot h(x)]
d
x
d
[
g
(
x
)
⋅
h
(
x
)]
at
x
=
5
x=5
x
=
5
=
−
3
-3
−
3
.
More problems from Power rule
Question
Let
h
(
x
)
=
log
2
(
x
)
h(x)=\log _{2}(x)
h
(
x
)
=
lo
g
2
(
x
)
.
\newline
Can we use the mean value theorem to say the equation
h
′
(
x
)
=
1
h^{\prime}(x)=1
h
′
(
x
)
=
1
has a solution where
1
<
x
<
2
1<x<2
1
<
x
<
2
?
\newline
Choose
1
1
1
answer:
\newline
(A) No, since the function is not differentiable on that interval.
\newline
(B) No, since the average rate of change of
h
h
h
over the interval
1
≤
x
≤
2
1 \leq x \leq 2
1
≤
x
≤
2
isn't equal to
1
1
1
.
\newline
(C) Yes, both conditions for using the mean value theorem have been met.
Get tutor help
Posted 9 months ago
Question
What is the sign of
39
11
13
+
(
−
41
1
13
)
?
39 \frac{11}{13}+\left(-41 \frac{1}{13}\right) \text { ? }
39
13
11
+
(
−
41
13
1
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
1042
+
1042
?
-1042+1042 ?
−
1042
+
1042
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
18
9
17
+
(
−
18
9
17
)
-18 \frac{9}{17}+\left(-18 \frac{9}{17}\right)
−
18
17
9
+
(
−
18
17
9
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
23
45
+
(
−
23
45
)
?
\frac{23}{45}+\left(-\frac{23}{45}\right) ?
45
23
+
(
−
45
23
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
45
+
(
−
38
)
45+(-38)
45
+
(
−
38
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
49.8
+
61.2
-49.8+61.2
−
49.8
+
61.2
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
1.69
+
(
−
1.69
)
?
-1.69+(-1.69) ?
−
1.69
+
(
−
1.69
)?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
37
+
(
−
37
)
37+(-37)
37
+
(
−
37
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
g
(
x
)
=
2
x
−
9
g
′
(
x
)
=
?
\begin{array}{l} g(x)=\sqrt{2 x-9} \\ g^{\prime}(x)=? \end{array}
g
(
x
)
=
2
x
−
9
g
′
(
x
)
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
2
x
−
9
2
\frac{\sqrt{2 x-9}}{2}
2
2
x
−
9
\newline
(B)
1
2
x
−
9
\frac{1}{\sqrt{2 x-9}}
2
x
−
9
1
\newline
(C)
1
2
2
x
−
9
\frac{1}{2 \sqrt{2 x-9}}
2
2
x
−
9
1
\newline
(D)
1
x
\frac{1}{\sqrt{x}}
x
1
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant