Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g be a function such that 
g(5)=7 and 
g^(')(5)=-2.
Let 
h be the function 
h(x)=x.

Evaluate 
(d)/(dx)[g(x)*h(x)] at 
x=5.

- Let g g be a function such that g(5)=7 g(5)=7 and g(5)=2 g^{\prime}(5)=-2 .\newline- Let h h be the function h(x)=x h(x)=x .\newlineEvaluate ddx[g(x)h(x)] \frac{d}{d x}[g(x) \cdot h(x)] at x=5 x=5 .

Full solution

Q. - Let g g be a function such that g(5)=7 g(5)=7 and g(5)=2 g^{\prime}(5)=-2 .\newline- Let h h be the function h(x)=x h(x)=x .\newlineEvaluate ddx[g(x)h(x)] \frac{d}{d x}[g(x) \cdot h(x)] at x=5 x=5 .
  1. Apply Product Rule: Use the product rule for differentiation: fgf * g' = f' * g + f * g'.
  2. Differentiate Functions: Differentiate g(x)g(x) to get g(x)g'(x) and h(x)h(x) to get h(x)h'(x).\newlineSince h(x)=xh(x) = x, h(x)=1h'(x) = 1.
  3. Evaluate Derivatives: Evaluate g(5)g'(5) and h(5)h(5) using the given information.\newlineg(5)=2g'(5) = -2 and h(5)=5h(5) = 5.
  4. Apply Product Rule Formula: Plug the values into the product rule formula.\newline(ddx)[g(x)h(x)](\frac{d}{dx})[g(x)*h(x)] at x=5x=5 = g(5)h(5)+g(5)h(5)g'(5) * h(5) + g(5) * h'(5).
  5. Substitute Values: Substitute the known values into the equation.\newlineddx[g(x)h(x)]\frac{d}{dx}[g(x)*h(x)] at x=5x=5 = (2)(-2) * 55 + 77 * 11.
  6. Perform Multiplication: Perform the multiplication. (d)/(dx)[g(x)h(x)](d)/(dx)[g(x)*h(x)] at x=5x=5 = 10+7-10 + 7.
  7. Add Results: Add the results to get the final answer.\newlineddx[g(x)h(x)]\frac{d}{dx}[g(x)\cdot h(x)] at x=5x=5 = 3-3.

More problems from Power rule