Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=sqrtxcos(x).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
-(1)/(sqrtx)+sin(x)
(B) 
(cos(x))/(2sqrtx)-sqrtxsin(x)
(C) 
-2sqrtxcos(x)-sqrtxsin(x)
(D) 
-(sin(x))/(sqrtx)

Let y=xcos(x) y=\sqrt{x} \cos (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) 1x+sin(x) -\frac{1}{\sqrt{x}}+\sin (x) \newline(B) cos(x)2xxsin(x) \frac{\cos (x)}{2 \sqrt{x}}-\sqrt{x} \sin (x) \newline(C) 2xcos(x)xsin(x) -2 \sqrt{x} \cos (x)-\sqrt{x} \sin (x) \newline(D) sin(x)x -\frac{\sin (x)}{\sqrt{x}}

Full solution

Q. Let y=xcos(x) y=\sqrt{x} \cos (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) 1x+sin(x) -\frac{1}{\sqrt{x}}+\sin (x) \newline(B) cos(x)2xxsin(x) \frac{\cos (x)}{2 \sqrt{x}}-\sqrt{x} \sin (x) \newline(C) 2xcos(x)xsin(x) -2 \sqrt{x} \cos (x)-\sqrt{x} \sin (x) \newline(D) sin(x)x -\frac{\sin (x)}{\sqrt{x}}
  1. Apply Product Rule: Use the product rule for differentiation, which states that (fg)=fg+fg (fg)' = f'g + fg' , where f f and g g are functions of x x . Here, f(x)=x f(x) = \sqrt{x} and g(x)=cos(x) g(x) = \cos(x) .
  2. Differentiate x\sqrt{x}: Differentiate f(x)=xf(x) = \sqrt{x} with respect to xx to get f(x)f'(x). The derivative of x\sqrt{x} is (12)x(12)(\frac{1}{2})x^{(-\frac{1}{2})}.
  3. Differentiate cos(x)\cos(x): Differentiate g(x)=cos(x)g(x) = \cos(x) with respect to xx to get g(x)g'(x). The derivative of cos(x)\cos(x) is sin(x)-\sin(x).
  4. Apply Product Rule: Apply the product rule: (xcos(x))=12x12cos(x)+x(sin(x))(\sqrt{x}\cos(x))' = \frac{1}{2}x^{-\frac{1}{2}}\cos(x) + \sqrt{x}(-\sin(x)).
  5. Simplify Expression: Simplify the expression: (\frac{\(1\)}{\(2\)})x^{(-\frac{\(1\)}{\(2\)})}\cos(x) - x^{(\frac{\(1\)}{\(2\)})}\sin(x)\.
  6. Write in Terms of \(\sqrt{x}: Write the expression in terms of x\sqrt{x}: cos(x)2xxsin(x)\frac{\cos(x)}{2\sqrt{x}} - \sqrt{x}\sin(x).
  7. Match with Answer Choices: Match the simplified derivative with the given answer choices.

More problems from Power rule