Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the equations are true identities?
A. 
(a+b)(2a+1)=a(2a+2b+1)
B. 
(n+2)^(2)-n^(2)=4(n+1)
Choose 1 answer:
(A) Only A
(B) Only B
(C) Both A and B
(D) Neither A nor B

Which of the equations are true identities?\newlineA. (a+b)(2a+1)=a(2a+2b+1) (a+b)(2 a+1)=a(2 a+2 b+1) \newlineB. (n+2)2n2=4(n+1) (n+2)^{2}-n^{2}=4(n+1) \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A nor B

Full solution

Q. Which of the equations are true identities?\newlineA. (a+b)(2a+1)=a(2a+2b+1) (a+b)(2 a+1)=a(2 a+2 b+1) \newlineB. (n+2)2n2=4(n+1) (n+2)^{2}-n^{2}=4(n+1) \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A nor B
  1. Expand Expression: Expand (a+b)(2a+1)(a+b)(2a+1) using the distributive property.\newline(a+b)(2a+1)=a(2a)+a(1)+b(2a)+b(1)(a+b)(2a+1) = a(2a) + a(1) + b(2a) + b(1)\newline=2a2+a+2ab+b= 2a^2 + a + 2ab + b
  2. Compare Expanded Forms: Compare the expanded form with the right side of equation A.\newline2a2+a+2ab+b2a^2 + a + 2ab + b ?= a(2a+2b+1)a(2a+2b+1)\newline= 2a2+2ab+a2a^2 + 2ab + a
  3. Identify Missing Term: Notice that the term ' extit{b}' is missing on the right side of equation extit{A}. Therefore, equation extit{A} is not a true identity.
  4. Apply Binomial Theorem: Expand (n+2)2(n+2)^2 using the binomial theorem.\newline(n+2)2=n2+22n+22(n+2)^2 = n^2 + 2\cdot 2n + 2^2\newline=n2+4n+4= n^2 + 4n + 4
  5. Subtract and Simplify: Subtract n2n^2 from both sides of equation B.\newline(n+2)2n2=4n+4(n+2)^2 - n^2 = 4n + 4
  6. Compare Results: Compare the result with the right side of equation B.\newline4n+44(n+1)4n + 4 \neq 4(n+1)\newline=4n+4= 4n + 4
  7. Verify Identity: Since both sides of equation BB are equal after simplification, equation BB is a true identity.

More problems from Power rule