Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newlineb74b114b74\frac{b^{\frac{7}{4}}}{b^{\frac{11}{4}} \cdot b^{\frac{7}{4}}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newlineb74b114b74\frac{b^{\frac{7}{4}}}{b^{\frac{11}{4}} \cdot b^{\frac{7}{4}}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Combine exponents in denominator: We have the expression: b74/(b114b74)b^{\frac{7}{4}} / (b^{\frac{11}{4}} * b^{\frac{7}{4}})\newlineFirst, let's combine the exponents in the denominator using the property of exponents that states aman=am+na^m * a^n = a^{m+n}.
  2. Add exponents in denominator: Combine the exponents in the denominator:\newlineb114b74=b114+74b^{\frac{11}{4}} \cdot b^{\frac{7}{4}} = b^{\frac{11}{4} + \frac{7}{4}}
  3. Simplify exponent in denominator: Add the exponents in the denominator:\newlineb114+74=b184b^{\frac{11}{4} + \frac{7}{4}} = b^{\frac{18}{4}}
  4. Divide with subtracted exponents: Simplify the exponent in the denominator: b184=b4.5=b92b^{\frac{18}{4}} = b^{4.5} = b^{\frac{9}{2}}
  5. Subtract exponents with common denominator: Now we have the expression: b74/b92b^{\frac{7}{4}} / b^{\frac{9}{2}}\newlineTo divide two expressions with the same base, we subtract the exponents: am/an=amna^m / a^n = a^{m-n}.
  6. Convert to common denominator: Subtract the exponents:\newlineb74/b92=b7492b^{\frac{7}{4}} / b^{\frac{9}{2}} = b^{\frac{7}{4} - \frac{9}{2}}
  7. Apply property for positive exponent: To subtract the exponents, we need a common denominator. The common denominator for 44 and 22 is 44. Convert 92\frac{9}{2} to an expression with a denominator of 44: 92=(9×2)(2×2)=184\frac{9}{2} = \frac{(9\times2)}{(2\times2)} = \frac{18}{4}
  8. Final simplified expression: Now subtract the exponents with a common denominator: b74184=b114b^{\frac{7}{4} - \frac{18}{4}} = b^{-\frac{11}{4}}
  9. Final simplified expression: Now subtract the exponents with a common denominator:\newlineb74184=b114b^{\frac{7}{4} - \frac{18}{4}} = b^{-\frac{11}{4}}Since we assume all variables are positive and we want the exponent to be positive, we can use the property an=1ana^{-n} = \frac{1}{a^n} to rewrite the expression.
  10. Final simplified expression: Now subtract the exponents with a common denominator:\newlineb74184=b114b^{\frac{7}{4} - \frac{18}{4}} = b^{-\frac{11}{4}}Since we assume all variables are positive and we want the exponent to be positive, we can use the property an=1ana^{-n} = \frac{1}{a^n} to rewrite the expression.Apply the property to get a positive exponent:\newlineb114=1b114b^{-\frac{11}{4}} = \frac{1}{b^{\frac{11}{4}}}
  11. Final simplified expression: Now subtract the exponents with a common denominator:\newlineb74184=b114b^{\frac{7}{4} - \frac{18}{4}} = b^{-\frac{11}{4}}Since we assume all variables are positive and we want the exponent to be positive, we can use the property an=1ana^{-n} = \frac{1}{a^n} to rewrite the expression.Apply the property to get a positive exponent:\newlineb114=1b114b^{-\frac{11}{4}} = \frac{1}{b^{\frac{11}{4}}}The final simplified expression is:\newline1b114\frac{1}{b^{\frac{11}{4}}}

More problems from Power rule