Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the equations are true identities?
A. 
(x^(2)+2y)(x^(2)-3y)=x^(4)-6y^(2)
B. 
k^(3)-r^(3)=(k^(2)+r)(k-r^(2))
Choose 1 answer:
(A) Only A
(B) Only B
(C) Both A and B
(D) Neither A nor B

Which of the equations are true identities?\newlineA. (x2+2y)(x23y)=x46y2 \left(x^{2}+2 y\right)\left(x^{2}-3 y\right)=x^{4}-6 y^{2} \newlineB. k3r3=(k2+r)(kr2) k^{3}-r^{3}=\left(k^{2}+r\right)\left(k-r^{2}\right) \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A nor B

Full solution

Q. Which of the equations are true identities?\newlineA. (x2+2y)(x23y)=x46y2 \left(x^{2}+2 y\right)\left(x^{2}-3 y\right)=x^{4}-6 y^{2} \newlineB. k3r3=(k2+r)(kr2) k^{3}-r^{3}=\left(k^{2}+r\right)\left(k-r^{2}\right) \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A nor B
  1. Expand using FOIL method: Check equation A: x2+2y)(x23y) UsetheFOILmethodtoexpand.$x2x^{2}+2y)(x^{2}-3y)\ Use the FOIL method to expand. \$x^{2} * x2x^{2} - x2x^{2} * 3y3y + 2y2y * x2x^{2} - 2y2y * 3y3y
  2. Simplify the terms: Simplify the terms. x43x2y+2x2y6y2x^{4} - 3x^{2}y + 2x^{2}y - 6y^{2}
  3. Combine like terms: Combine like terms. \newlinex4x2y6y2x^{4} - x^{2}y - 6y^{2}\newlineThis is not equal to x46y2x^{4} - 6y^{2}, so equation A is not a true identity.
  4. Apply difference of cubes formula: Check equation B: k3r3=(k2+r)(kr2)k^{3}-r^{3}=(k^{2}+r)(k-r^{2})\newlineUse the difference of cubes formula: a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)
  5. Use formula on k3r3k^{3}-r^{3}: Apply the formula to k3r3k^{3}-r^{3}. \newline(kr)(k2+kr+r2)(k - r)(k^2 + kr + r^2)\newlineThis is not equal to (k2+r)(kr2)(k^{2}+r)(k-r^{2}), so equation B is not a true identity.

More problems from Power rule