Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Csc, sec, and cot of special angles
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
sin
2
θ
−
4
=
0
\sin ^{2} \theta-4=0
sin
2
θ
−
4
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
cos
2
θ
−
1
=
0
\cos ^{2} \theta-1=0
cos
2
θ
−
1
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
csc
2
θ
+
5
csc
θ
−
6
=
0
\csc ^{2} \theta+5 \csc \theta-6=0
csc
2
θ
+
5
csc
θ
−
6
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
9
sin
2
θ
+
sin
θ
=
−
2
sin
θ
+
2
9 \sin ^{2} \theta+\sin \theta=-2 \sin \theta+2
9
sin
2
θ
+
sin
θ
=
−
2
sin
θ
+
2
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
6
tan
2
θ
=
13
tan
θ
+
8
6 \tan ^{2} \theta=13 \tan \theta+8
6
tan
2
θ
=
13
tan
θ
+
8
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
4
cos
2
θ
−
9
=
0
4 \cos ^{2} \theta-9=0
4
cos
2
θ
−
9
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
cos
2
θ
−
2
cos
θ
=
0
\cos ^{2} \theta-2 \cos \theta=0
cos
2
θ
−
2
cos
θ
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
9
cot
2
θ
−
1
=
0
9 \cot ^{2} \theta-1=0
9
cot
2
θ
−
1
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
cot
2
θ
−
1
=
0
\cot ^{2} \theta-1=0
cot
2
θ
−
1
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
16
sin
2
θ
−
9
=
0
16 \sin ^{2} \theta-9=0
16
sin
2
θ
−
9
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
4
cos
2
θ
+
17
cos
θ
+
7
=
5
cos
θ
+
2
4 \cos ^{2} \theta+17 \cos \theta+7=5 \cos \theta+2
4
cos
2
θ
+
17
cos
θ
+
7
=
5
cos
θ
+
2
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
4
sin
2
θ
−
6
sin
θ
+
4
=
−
9
sin
θ
+
3
-4 \sin ^{2} \theta-6 \sin \theta+4=-9 \sin \theta+3
−
4
sin
2
θ
−
6
sin
θ
+
4
=
−
9
sin
θ
+
3
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
9
tan
2
θ
+
19
tan
θ
=
−
2
9 \tan ^{2} \theta+19 \tan \theta=-2
9
tan
2
θ
+
19
tan
θ
=
−
2
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
7
sin
2
θ
−
4
sin
θ
+
2
=
−
1
-7 \sin ^{2} \theta-4 \sin \theta+2=-1
−
7
sin
2
θ
−
4
sin
θ
+
2
=
−
1
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
4
tan
2
θ
+
3
tan
θ
−
1
=
3
tan
θ
4 \tan ^{2} \theta+3 \tan \theta-1=3 \tan \theta
4
tan
2
θ
+
3
tan
θ
−
1
=
3
tan
θ
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
6
tan
2
θ
−
16
tan
θ
=
−
9
tan
θ
+
2
-6 \tan ^{2} \theta-16 \tan \theta=-9 \tan \theta+2
−
6
tan
2
θ
−
16
tan
θ
=
−
9
tan
θ
+
2
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
8
sin
2
θ
−
11
sin
θ
−
6
=
−
9
sin
θ
−
3
8 \sin ^{2} \theta-11 \sin \theta-6=-9 \sin \theta-3
8
sin
2
θ
−
11
sin
θ
−
6
=
−
9
sin
θ
−
3
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
5
sin
2
θ
−
3
=
2
sin
θ
−
6
-5 \sin ^{2} \theta-3=2 \sin \theta-6
−
5
sin
2
θ
−
3
=
2
sin
θ
−
6
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
−
5
tan
2
θ
−
3
tan
θ
+
6
=
−
5
tan
θ
+
3
-5 \tan ^{2} \theta-3 \tan \theta+6=-5 \tan \theta+3
−
5
tan
2
θ
−
3
tan
θ
+
6
=
−
5
tan
θ
+
3
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
9
cos
2
θ
+
3
cos
θ
=
8
cos
θ
+
4
9 \cos ^{2} \theta+3 \cos \theta=8 \cos \theta+4
9
cos
2
θ
+
3
cos
θ
=
8
cos
θ
+
4
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
2
sin
2
θ
−
2
sin
θ
=
−
3
sin
θ
+
1
2 \sin ^{2} \theta-2 \sin \theta=-3 \sin \theta+1
2
sin
2
θ
−
2
sin
θ
=
−
3
sin
θ
+
1
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
sin
2
θ
−
8
sin
θ
+
12
=
0
\sin ^{2} \theta-8 \sin \theta+12=0
sin
2
θ
−
8
sin
θ
+
12
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
4
sin
2
θ
+
sin
θ
=
0
4 \sin ^{2} \theta+\sin \theta=0
4
sin
2
θ
+
sin
θ
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
sin
2
θ
+
sin
θ
=
0
\sin ^{2} \theta+\sin \theta=0
sin
2
θ
+
sin
θ
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
sin
2
θ
−
sin
θ
=
0
\sin ^{2} \theta-\sin \theta=0
sin
2
θ
−
sin
θ
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
25
csc
2
θ
−
9
=
0
25 \csc ^{2} \theta-9=0
25
csc
2
θ
−
9
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
tan
2
θ
+
5
tan
θ
+
6
=
0
\tan ^{2} \theta+5 \tan \theta+6=0
tan
2
θ
+
5
tan
θ
+
6
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
tan
2
θ
−
3
tan
θ
=
0
\tan ^{2} \theta-3 \tan \theta=0
tan
2
θ
−
3
tan
θ
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that satisfy the equation below, to the nearest tenth of a degree.
\newline
4
sec
2
θ
−
25
=
0
4 \sec ^{2} \theta-25=0
4
sec
2
θ
−
25
=
0
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Write
(
3
+
2
i
)
2
(3+2 i)^{2}
(
3
+
2
i
)
2
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
1
−
3
i
)
3
(1-3 i)^{3}
(
1
−
3
i
)
3
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
1
−
10
i
)
2
(1-10 i)^{2}
(
1
−
10
i
)
2
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
9
−
2
i
)
2
(9-2 i)^{2}
(
9
−
2
i
)
2
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
Write
(
2
+
3
i
)
3
(2+3 i)^{3}
(
2
+
3
i
)
3
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Get tutor help
What is the value of the expression below when
w
=
3
w=3
w
=
3
?
\newline
3
w
2
−
8
w
+
7
3 w^{2}-8 w+7
3
w
2
−
8
w
+
7
\newline
Answer:
Get tutor help
Reduce
\newline
(
a
+
b
)
2
(a+b)^{2}
(
a
+
b
)
2
Get tutor help
Rewrite using a positive exponent.
\newline
n
−
5
n^{-5}
n
−
5
\newline
n
−
5
=
n^{-5} =
n
−
5
=
Get tutor help
Distribute to create an equivalent expression with the fewest symbols possible.
(
1
−
2
g
+
4
h
)
⋅
5
=
( 1 -2g +4h)\cdot 5 =
(
1
−
2
g
+
4
h
)
⋅
5
=
Get tutor help
Evaluate
∑
m
≥
1
arctan
(
1
m
)
=
\sum_{m \geq 1}\arctan\left(\frac{1}{\sqrt{m}}\right)=
∑
m
≥
1
arctan
(
m
1
)
=
Get tutor help
Find
d
y
d
x
:
y
=
csc
(
2
x
4
+
6
)
\frac{dy}{dx}: y=\csc(2x^{4}+6)
d
x
d
y
:
y
=
csc
(
2
x
4
+
6
)
Get tutor help
[
arctan
e
x
]
0
∞
\left[\arctan e^{x}\right]_{0}^{\infty}
[
arctan
e
x
]
0
∞
=
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
−
94
2
∘
-942^{\circ}
−
94
2
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
69
8
∘
698^{\circ}
69
8
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
111
9
∘
1119^{\circ}
111
9
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
79
2
∘
792^{\circ}
79
2
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
69
6
∘
696^{\circ}
69
6
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
−
27
6
∘
-276^{\circ}
−
27
6
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Express the given expression as an integer or as a fraction in simplest form.
\newline
(
e
ln
7
−
ln
20
)
\left(e^{\ln 7-\ln 20}\right)
(
e
l
n
7
−
l
n
20
)
\newline
Answer:
Get tutor help
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
6
0
∘
60^{\circ}
6
0
∘
\newline
Answer:
Get tutor help
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
7
5
∘
75^{\circ}
7
5
∘
\newline
Answer:
Get tutor help
Previous
1
2
3
...
4
Next