Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

4sin^(2)theta+sin theta=0
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline4sin2θ+sinθ=0 4 \sin ^{2} \theta+\sin \theta=0 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline4sin2θ+sinθ=0 4 \sin ^{2} \theta+\sin \theta=0 \newlineAnswer: θ= \theta=
  1. Factor equation: Factor the given trigonometric equation.\newlineThe equation given is 4sin2(θ)+sin(θ)=04\sin^2(\theta) + \sin(\theta) = 0. We can factor out sin(θ)\sin(\theta) from both terms.\newlinesin(θ)(4sin(θ)+1)=0\sin(\theta)(4\sin(\theta) + 1) = 0
  2. Set equal and solve: Set each factor equal to zero and solve for θ\theta. We have two factors: sin(θ)\sin(\theta) and (4sin(θ)+1)(4\sin(\theta) + 1). Setting each equal to zero gives us two separate equations to solve: 11. sin(θ)=0\sin(\theta) = 0 22. 4sin(θ)+1=04\sin(\theta) + 1 = 0
  3. Solve sin(θ)=0\sin(\theta) = 0: Solve the first equation sin(θ)=0\sin(\theta) = 0. The sine function is equal to zero at 00^\circ and 180180^\circ within the range of 00^\circ to 360360^\circ. Therefore, θ=0\theta = 0^\circ and θ=180\theta = 180^\circ.
  4. Solve 4sin(θ)+1=04\sin(\theta) + 1 = 0: Solve the second equation 4sin(θ)+1=04\sin(\theta) + 1 = 0 for θ\theta.\newlineSubtract 11 from both sides to isolate the sine term:\newline4sin(θ)=14\sin(\theta) = -1\newlineDivide both sides by 44:\newlinesin(θ)=14\sin(\theta) = -\frac{1}{4}
  5. Find angles for sin(θ)=14\sin(\theta) = -\frac{1}{4}: Find the angles that correspond to sin(θ)=14\sin(\theta) = -\frac{1}{4}. Since the sine function is negative, we are looking for angles in the third and fourth quadrants where sine is negative. Using the inverse sine function on a calculator, we find the reference angle: θ=arcsin(14)14.5\theta = \arcsin(\frac{1}{4}) \approx 14.5^\circ
  6. Determine angles in quadrants: Determine the actual angles in the third and fourth quadrants.\newlineFor the third quadrant, we add 180180^\circ to the reference angle:\newlineθ180+14.5=194.5\theta \approx 180^\circ + 14.5^\circ = 194.5^\circ\newlineFor the fourth quadrant, we subtract the reference angle from 360360^\circ:\newlineθ36014.5=345.5\theta \approx 360^\circ - 14.5^\circ = 345.5^\circ
  7. Combine all solutions: Combine all the solutions.\newlineThe angles that satisfy the equation 4sin2(θ)+sin(θ)=04\sin^2(\theta) + \sin(\theta) = 0 are:\newlineθ=0\theta = 0^\circ, θ=180\theta = 180^\circ, θ=194.5\theta = 194.5^\circ, and θ=345.5\theta = 345.5^\circ.

More problems from Csc, sec, and cot of special angles