Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

4tan^(2)theta+3tan theta-1=3tan theta
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline4tan2θ+3tanθ1=3tanθ 4 \tan ^{2} \theta+3 \tan \theta-1=3 \tan \theta \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline4tan2θ+3tanθ1=3tanθ 4 \tan ^{2} \theta+3 \tan \theta-1=3 \tan \theta \newlineAnswer: θ= \theta=
  1. Simplify Equation: Simplify the given equation by subtracting 3tan(θ)3\tan(\theta) from both sides.\newline4tan2(θ)+3tan(θ)1=3tan(θ)4\tan^2(\theta) + 3\tan(\theta) - 1 = 3\tan(\theta)\newline4tan2(θ)+3tan(θ)3tan(θ)1=04\tan^2(\theta) + 3\tan(\theta) - 3\tan(\theta) - 1 = 0\newline4tan2(θ)1=04\tan^2(\theta) - 1 = 0
  2. Solve Quadratic Equation: Solve the simplified quadratic equation for tan(θ)\tan(\theta).4tan2(θ)1=04\tan^2(\theta) - 1 = 0(2tan(θ)1)(2tan(θ)+1)=0(2\tan(\theta) - 1)(2\tan(\theta) + 1) = 0
  3. Set and Solve Factors: Set each factor equal to zero and solve for tan(θ)\tan(\theta).2tan(θ)1=02\tan(\theta) - 1 = 0 or 2tan(θ)+1=02\tan(\theta) + 1 = 0tan(θ)=12\tan(\theta) = \frac{1}{2} or tan(θ)=12\tan(\theta) = -\frac{1}{2}
  4. Find Corresponding Angles: Find the angles θ\theta that correspond to tan(θ)=12\tan(\theta) = \frac{1}{2} and tan(θ)=12\tan(\theta) = -\frac{1}{2} within the range 0^\circ \leq \theta < 360^\circ. For tan(θ)=12\tan(\theta) = \frac{1}{2}, the angles are approximately 26.626.6^\circ and 206.6206.6^\circ. For tan(θ)=12\tan(\theta) = -\frac{1}{2}, the angles are approximately 333.4333.4^\circ and 153.4153.4^\circ.

More problems from Csc, sec, and cot of special angles