Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

tan^(2)theta-3tan theta=0
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newlinetan2θ3tanθ=0 \tan ^{2} \theta-3 \tan \theta=0 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newlinetan2θ3tanθ=0 \tan ^{2} \theta-3 \tan \theta=0 \newlineAnswer: θ= \theta=
  1. Factor Quadratic Equation: Factor the given quadratic equation in terms of tan(θ)\tan(\theta).tan2(θ)3tan(θ)=0\tan^2(\theta) - 3\tan(\theta) = 0 can be factored as tan(θ)(tan(θ)3)=0\tan(\theta)(\tan(\theta) - 3) = 0.
  2. Set Equations Equal: Set each factor equal to zero to find the values of θ\theta that satisfy the equation.tan(θ)=0\tan(\theta) = 0 and tan(θ)3=0\tan(\theta) - 3 = 0.
  3. Solve tan(θ)=0\tan(\theta) = 0: Solve the first equation tan(θ)=0\tan(\theta) = 0.\newlineThe tangent function is zero at 00 degrees and 180180 degrees.\newlineθ=0\theta = 0 degrees, 180180 degrees.
  4. Solve tan(θ)3=0\tan(\theta) - 3 = 0: Solve the second equation tan(θ)3=0\tan(\theta) - 3 = 0.\newlinetan(θ)=3\tan(\theta) = 3.\newlineUse an inverse tangent function to find the angle whose tangent is 33.\newlineθarctan(3)\theta \approx \arctan(3).
  5. Calculate arctan(3)\arctan(3): Calculate the angle using a calculator for arctan(3)\arctan(3).θ71.6\theta \approx 71.6 degrees.
  6. Find Second Solution: Find the second solution within the range 00 degrees to 360360 degrees.\newlineThe tangent function has a period of 180180 degrees, so we add 180180 degrees to the first solution.\newlineθ71.6\theta \approx 71.6 degrees +180+ 180 degrees =251.6= 251.6 degrees.
  7. List All Solutions: List all the solutions within the given range. θ=0\theta = 0 degrees, 71.671.6 degrees, 180180 degrees, 251.6251.6 degrees.

More problems from Csc, sec, and cot of special angles