Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

9cot^(2)theta-1=0
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline9cot2θ1=0 9 \cot ^{2} \theta-1=0 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline9cot2θ1=0 9 \cot ^{2} \theta-1=0 \newlineAnswer: θ= \theta=
  1. Solve for cotangent: Solve the equation for cot2(θ)\cot^2(\theta). \newline9cot2(θ)1=09\cot^2(\theta) - 1 = 0\newlineAdd 11 to both sides of the equation.\newline9cot2(θ)=19\cot^2(\theta) = 1\newlineDivide both sides by 99.\newlinecot2(θ)=19\cot^2(\theta) = \frac{1}{9}\newlineTake the square root of both sides.\newlinecot(θ)=±13\cot(\theta) = \pm\frac{1}{3}
  2. Find corresponding angles: Find the angles that correspond to the cotangent values.\newlineSince cotangent is the reciprocal of tangent, we can write:\newlinetan(θ)=±3\tan(\theta) = \pm 3
  3. Positive tangent value: Determine the angles for the positive tangent value.\newlineUsing a calculator or trigonometric tables, find the angle whose tangent is 33.\newlinetan1(3)71.6\tan^{-1}(3) \approx 71.6^\circ\newlineSince tangent is positive in the first and third quadrants, we add 180180^\circ to find the angle in the third quadrant.\newline71.6+180=251.671.6^\circ + 180^\circ = 251.6^\circ
  4. Negative tangent value: Determine the angles for the negative tangent value.\newlineSince tangent is negative in the second and fourth quadrants, we find the reference angle for tan1(3)\tan^{-1}(-3).\newlinetan1(3)71.6\tan^{-1}(-3) \approx -71.6^\circ\newlineTo find the angle in the second quadrant, we add 180180^\circ to the reference angle.\newline18071.6=108.4180^\circ - 71.6^\circ = 108.4^\circ\newlineTo find the angle in the fourth quadrant, we add 360360^\circ to the reference angle.\newline36071.6=288.4360^\circ - 71.6^\circ = 288.4^\circ
  5. List of satisfying angles: List all the angles that satisfy the original equation. θ71.6,108.4,251.6,288.4\theta \approx 71.6^\circ, 108.4^\circ, 251.6^\circ, 288.4^\circ

More problems from Csc, sec, and cot of special angles