Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(1-3i)^(3) in simplest 
a+bi form.
Answer:

Write (13i)3 (1-3 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (13i)3 (1-3 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:
  1. Expand Expression: Expand (13i)3(1-3i)^{3} using the binomial theorem or by multiplying (13i)(1-3i) by itself three times.\newline(1-3i) \times (1-3i) \times (1-3i) = (1-3i) \times ((1-3i) \times (1-3i))\(\newlineFirst, we'll multiply the first two factors:\newline\$(1-3i) \times (1-3i) = 1^{2} - 2\times1\times3i + (3i)^{2}\(\newline\)= 1 - 6i - 9i^{2}\(\newline\)Since \$i^{2} = -1\), we replace \(i^{2}\) with \(-1\):\(\newline\)= \(1\) - \(6\)i - \(9\)(\(-1\))\(\newline\)= \(1\) - \(6\)i + \(9\)\(\newline\)= \(10\) - \(6\)i
  2. First Multiplication: Now, multiply the result from Step \(1\) by \((1-3i)\):\(\newline\)\((10 - 6i) \times (1-3i) = 10(1) - 10(3i) - 6i(1) + 6i(3i)\)\(\newline\)\(= 10 - 30i - 6i + 18i^2\)\(\newline\)Again, replace \(i^2\) with \(-1\):\(\newline\)\(= 10 - 30i - 6i + 18(-1)\)\(\newline\)\(= 10 - 30i - 6i - 18\)\(\newline\)Combine like terms:\(\newline\)\(= (10 - 18) - (30i + 6i)\)\(\newline\)\(= -8 - 36i\)

More problems from Csc, sec, and cot of special angles