Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

6tan^(2)theta=13 tan theta+8
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline6tan2θ=13tanθ+8 6 \tan ^{2} \theta=13 \tan \theta+8 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline6tan2θ=13tanθ+8 6 \tan ^{2} \theta=13 \tan \theta+8 \newlineAnswer: θ= \theta=
  1. Write Standard Quadratic Form: Write the given equation in the standard quadratic form by moving all terms to one side.\newline6tan2(θ)13tan(θ)8=06\tan^2(\theta) - 13\tan(\theta) - 8 = 0
  2. Factor Quadratic Equation: Factor the quadratic equation to find the values of tan(θ)\tan(\theta).(2tan(θ)+1)(3tan(θ)8)=0(2\tan(\theta) + 1)(3\tan(\theta) - 8) = 0
  3. Set and Solve for tan(θ)\tan(\theta): Set each factor equal to zero and solve for tan(θ)\tan(\theta).2tan(θ)+1=02\tan(\theta) + 1 = 0 or 3tan(θ)8=03\tan(\theta) - 8 = 0
  4. Solve for tan(θ)=12\tan(\theta) = -\frac{1}{2}: Solve the first equation for tan(θ)\tan(\theta).\newlinetan(θ)=12\tan(\theta) = -\frac{1}{2}
  5. Solve for tan(θ)=83\tan(\theta) = \frac{8}{3}: Solve the second equation for tan(θ)\tan(\theta).\newlinetan(θ)=83\tan(\theta) = \frac{8}{3}
  6. Find Angles for tan(θ)=12\tan(\theta) = -\frac{1}{2}: Find the angles that correspond to tan(θ)=12\tan(\theta) = -\frac{1}{2} in the interval [0,360)[0^\circ, 360^\circ). The angles are approximately 333.4333.4^\circ and 153.4153.4^\circ.
  7. Find Angles for tan(θ)=83\tan(\theta) = \frac{8}{3}: Find the angles that correspond to tan(θ)=83\tan(\theta) = \frac{8}{3} in the interval [0,360)[0^\circ, 360^\circ).\newlineThe angles are approximately 69.469.4^\circ and 249.4249.4^\circ.

More problems from Csc, sec, and cot of special angles