Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(1-10 i)^(2) in simplest 
a+bi form.
Answer:

Write (110i)2 (1-10 i)^{2} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (110i)2 (1-10 i)^{2} in simplest a+bi a+b i form.\newlineAnswer:
  1. Calculate a2a^2: To square the complex number (110i)(1-10i), we will use the formula (a+bi)2=a2+2abib2(a+bi)^2 = a^2 + 2abi - b^2, where a=1a=1 and b=10b=-10.
  2. Calculate 2abi2abi: First, we calculate a2a^2, which is 12=11^2 = 1.
  3. Calculate b2-b^2: Next, we calculate 2abi2abi, which is 2×1×(10i)=20i2 \times 1 \times (-10i) = -20i.
  4. Combine results: Then, we calculate b2-b^2, which is (10)2=100-(-10)^2 = -100.
  5. Simplify expression: Now, we combine these results to get the squared form: 12+2×1×(10i)(10)2=120i1001^2 + 2 \times 1 \times (-10i) - (-10)^2 = 1 - 20i - 100.
  6. Simplify expression: Now, we combine these results to get the squared form: 12+2×1×(10i)(10)2=120i1001^2 + 2 \times 1 \times (-10i) - (-10)^2 = 1 - 20i - 100. Simplify the expression to get the final result: 120i100=9920i1 - 20i - 100 = -99 - 20i.

More problems from Csc, sec, and cot of special angles