Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(9-2i)^(2) in simplest 
a+bi form.
Answer:

Write (92i)2 (9-2 i)^{2} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (92i)2 (9-2 i)^{2} in simplest a+bi a+b i form.\newlineAnswer:
  1. Calculate (92i)2(9-2i)^2: To square the complex number (92i)(9-2i), we will use the formula (abi)2=a22abi+(bi)2(a-bi)^2 = a^2 - 2abi + (bi)^2. Let's calculate (92i)2(9-2i)^2: (92i)2=92292i+(2i)2(9-2i)^2 = 9^2 - 2\cdot9\cdot2i + (2i)^2
  2. Compute each term: Now we will compute each term separately:\newline92=819^2 = 81\newline2×9×2i=36i-2 \times 9 \times 2i = -36i\newline(2i)2=4(2i)^2 = -4 (since i2=1i^2 = -1)
  3. Combine terms: Combine the terms to get the result in a+bia+bi form:\newline8136i481 - 36i - 4
  4. Simplify expression: Simplify the expression by combining like terms: 814=7781 - 4 = 77 So, the expression becomes 7736i77 - 36i
  5. Final answer: The final answer in a+bia+bi form is: 7736i77 - 36i

More problems from Csc, sec, and cot of special angles