Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

csc^(2)theta+5csc theta-6=0
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newlinecsc2θ+5cscθ6=0 \csc ^{2} \theta+5 \csc \theta-6=0 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newlinecsc2θ+5cscθ6=0 \csc ^{2} \theta+5 \csc \theta-6=0 \newlineAnswer: θ= \theta=
  1. Set xx as csc(θ)\csc(\theta): Recognize that the given equation is a quadratic equation in terms of csc(θ)\csc(\theta). Let's set x=csc(θ)x = \csc(\theta) to make it look more familiar.\newlineThe equation becomes x2+5x6=0x^2 + 5x - 6 = 0.
  2. Factor the quadratic: Factor the quadratic equation. \newline(x+6)(x1)=0(x + 6)(x - 1) = 0
  3. Solve for x: Solve for x.\newlinex+6=0x + 6 = 0 or x1=0x - 1 = 0\newlinex=6x = -6 or x=1x = 1
  4. Translate to csc(θ)\csc(\theta): Translate the solutions for xx back into terms of csc(θ)\csc(\theta).\newlinecsc(θ)=6\csc(\theta) = -6 or csc(θ)=1\csc(\theta) = 1
  5. Use sine definition: Solve for θ\theta using the definition of cosecant, which is the reciprocal of sine.\newlineFor csc(θ)=1\csc(\theta) = 1, sin(θ)=1csc(θ)=11=1\sin(\theta) = \frac{1}{\csc(\theta)} = \frac{1}{1} = 1.\newlineFor csc(θ)=6\csc(\theta) = -6, sin(θ)=1csc(θ)=16\sin(\theta) = \frac{1}{\csc(\theta)} = \frac{1}{-6}.
  6. Find sin(θ)=1\sin(\theta) = 1: Find the angles that correspond to sin(θ)=1\sin(\theta) = 1.\newlinesin(θ)=1\sin(\theta) = 1 at θ=90°\theta = 90°.
  7. Find sin(θ)=16\sin(\theta) = -\frac{1}{6}: Find the angles that correspond to sin(θ)=16\sin(\theta) = \frac{1}{-6}.\newlineSince the range of the sine function is [1,1][-1, 1], and 16-\frac{1}{6} is within this range, we look for angles where the sine is negative. This occurs in the third and fourth quadrants.
  8. Find reference angle: Use the inverse sine function to find the reference angle for sin(θ)=16\sin(\theta) = -\frac{1}{6}.θref=arcsin(16)9.6\theta_{\text{ref}} = \arcsin(\frac{1}{6}) \approx 9.6^\circ
  9. Determine angles: Determine the angles in the third and fourth quadrants that have this reference angle.\newlineFor the third quadrant: θ=180°+θref180°+9.6°189.6°\theta = 180° + \theta_{\text{ref}} \approx 180° + 9.6° \approx 189.6°\newlineFor the fourth quadrant: θ=360°θref360°9.6°350.4°\theta = 360° - \theta_{\text{ref}} \approx 360° - 9.6° \approx 350.4°
  10. Combine solutions: Combine all the solutions. θ=90°,189.6°,350.4°\theta = 90°, 189.6°, 350.4°

More problems from Csc, sec, and cot of special angles