Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

9tan^(2)theta+19 tan theta=-2
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline9tan2θ+19tanθ=2 9 \tan ^{2} \theta+19 \tan \theta=-2 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline9tan2θ+19tanθ=2 9 \tan ^{2} \theta+19 \tan \theta=-2 \newlineAnswer: θ= \theta=
  1. Rewrite Equation in Quadratic Form: Rewrite the given equation in a quadratic form by moving all terms to one side.\newline9tan2(θ)+19tan(θ)+2=09\tan^2(\theta) + 19\tan(\theta) + 2 = 0
  2. Factor Quadratic Equation: Factor the quadratic equation to find the values of tan(θ)\tan(\theta).(3tan(θ)+1)(3tan(θ)+2)=0 (3\tan(\theta) + 1)(3\tan(\theta) + 2) = 0
  3. Solve for tan(θ)\tan(\theta): Set each factor equal to zero and solve for tan(θ)\tan(\theta).\newlineFirst factor: 3tan(θ)+1=03\tan(\theta) + 1 = 0\newlinetan(θ)=13\tan(\theta) = -\frac{1}{3}
  4. Find Corresponding Angles: Find the angles that correspond to the tangent values found in Step 33 within the range 0^\circ \leq \theta < 360^\circ. For tan(θ)=13\tan(\theta) = -\frac{1}{3}, use an inverse tangent function or a calculator to find the reference angle. θ=arctan(13)18.4\theta = \arctan(-\frac{1}{3}) \approx -18.4^\circ Since the tangent function is negative in the second and fourth quadrants, add 180180^\circ to find the angle in the second quadrant and use the reference angle to find the angle in the fourth quadrant. Second quadrant: 18018.4161.6180^\circ - 18.4^\circ \approx 161.6^\circ Fourth quadrant: 36018.4341.6360^\circ - 18.4^\circ \approx 341.6^\circ
  5. List All Angles: List all the angles found in Step 44 that are within the range 0^\circ \leq \theta < 360^\circ.θ161.6,341.6,146.3,326.3\theta \approx 161.6^\circ, 341.6^\circ, 146.3^\circ, 326.3^\circ

More problems from Csc, sec, and cot of special angles