Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

16sin^(2)theta-9=0
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline16sin2θ9=0 16 \sin ^{2} \theta-9=0 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline16sin2θ9=0 16 \sin ^{2} \theta-9=0 \newlineAnswer: θ= \theta=
  1. Solve for sin2(θ)\sin^2(\theta): Solve the equation for sin2(θ)\sin^2(\theta).
    16sin2(θ)9=016\sin^2(\theta) - 9 = 0
    Add 99 to both sides of the equation.
    16sin2(θ)=916\sin^2(\theta) = 9
    Divide both sides by 1616.
    sin2(θ)=916\sin^2(\theta) = \frac{9}{16}
    Take the square root of both sides.
    sin(θ)=±916\sin(\theta) = \pm\sqrt{\frac{9}{16}}
    sin(θ)=±34\sin(\theta) = \pm\frac{3}{4}
  2. Positive Value of sin(θ)\sin(\theta): Find the angles for the positive value of sin(θ)\sin(\theta).sin(θ)=34\sin(\theta) = \frac{3}{4}Since sin\sin is positive, θ\theta could be in the first or second quadrant.Use the inverse sine function to find the angle in the first quadrant.θ=sin1(34)\theta = \sin^{-1}(\frac{3}{4})θ48.6\theta \approx 48.6^\circ
  3. Second Quadrant Angle: Find the angle in the second quadrant.\newlineSince the sine function is symmetric with respect to the y-axis, the second quadrant angle will be 180°θ180° - \theta.\newlineθ=180°48.6°\theta = 180° - 48.6°\newlineθ131.4°\theta \approx 131.4°
  4. Negative Value of sin(θ)\sin(\theta): Find the angles for the negative value of sin(θ)\sin(\theta).sin(θ)=34\sin(\theta) = -\frac{3}{4}Since sin\sin is negative, θ\theta could be in the third or fourth quadrant.For the third quadrant, the reference angle is the same as the first quadrant, but we add 180180^\circ.θ=180+48.6\theta = 180^\circ + 48.6^\circθ228.6\theta \approx 228.6^\circ
  5. Fourth Quadrant Angle: Find the angle in the fourth quadrant.\newlineFor the fourth quadrant, we subtract the reference angle from 360°360°.\newlineθ=360°48.6°\theta = 360° - 48.6°\newlineθ311.4°\theta \approx 311.4°

More problems from Csc, sec, and cot of special angles