Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Solve trigonometric equations
How many solutions does the system of equations below have?
\newline
y
=
2
x
−
1
y = 2x - 1
y
=
2
x
−
1
\newline
y
=
2
x
−
1
y = 2x - 1
y
=
2
x
−
1
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
5
2
x
+
6
y = \frac{5}{2}x + 6
y
=
2
5
x
+
6
\newline
y
=
5
2
x
+
6
y = \frac{5}{2}x + 6
y
=
2
5
x
+
6
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
4
x
+
10
y = -4x + 10
y
=
−
4
x
+
10
\newline
y
=
−
4
x
−
4
9
y = -4x - \frac{4}{9}
y
=
−
4
x
−
9
4
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
4
x
−
2
5
y = 4x - \frac{2}{5}
y
=
4
x
−
5
2
\newline
y
=
4
x
+
6
5
y = 4x + \frac{6}{5}
y
=
4
x
+
5
6
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
2
x
−
2
5
y = 2x - \frac{2}{5}
y
=
2
x
−
5
2
\newline
y
=
8
7
x
+
8
5
y = \frac{8}{7}x + \frac{8}{5}
y
=
7
8
x
+
5
8
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
\newline
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
x
−
5
y = -x - 5
y
=
−
x
−
5
\newline
y
=
−
x
−
5
y = -x - 5
y
=
−
x
−
5
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
2
x
+
10
y = 2x + 10
y
=
2
x
+
10
\newline
y
=
−
9
10
x
+
10
9
y = -\frac{9}{10}x + \frac{10}{9}
y
=
−
10
9
x
+
9
10
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
x
−
3
10
y = -x - \frac{3}{10}
y
=
−
x
−
10
3
\newline
y
=
−
x
−
3
10
y = -x - \frac{3}{10}
y
=
−
x
−
10
3
\newline
Choices:
\newline
(A) no solution
\newline
(B) one solution
\newline
(C) infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
5
9
x
+
10
y = \frac{5}{9}x + 10
y
=
9
5
x
+
10
\newline
y
=
5
9
x
+
10
y = \frac{5}{9}x + 10
y
=
9
5
x
+
10
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
3
x
−
10
y = 3x - 10
y
=
3
x
−
10
\newline
y
=
9
10
x
−
4
5
y = \frac{9}{10}x - \frac{4}{5}
y
=
10
9
x
−
5
4
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
2
5
x
−
9
y = -\frac{2}{5}x - 9
y
=
−
5
2
x
−
9
\newline
y
=
−
2
5
x
−
9
y = -\frac{2}{5}x - 9
y
=
−
5
2
x
−
9
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
4
x
+
7
5
y = 4x + \frac{7}{5}
y
=
4
x
+
5
7
\newline
y
=
4
x
−
8
3
y = 4x - \frac{8}{3}
y
=
4
x
−
3
8
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
3
10
x
+
3
10
y = \frac{3}{10}x + \frac{3}{10}
y
=
10
3
x
+
10
3
\newline
y
=
3
10
x
+
3
10
y = \frac{3}{10}x + \frac{3}{10}
y
=
10
3
x
+
10
3
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
5
x
+
10
y = 5x + 10
y
=
5
x
+
10
\newline
y
=
5
4
x
+
9
5
y = \frac{5}{4}x + \frac{9}{5}
y
=
4
5
x
+
5
9
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
2
x
−
10
y = -2x - 10
y
=
−
2
x
−
10
\newline
y
=
−
2
x
+
4
7
y = -2x + \frac{4}{7}
y
=
−
2
x
+
7
4
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
7
x
−
6
y = 7x - 6
y
=
7
x
−
6
\newline
y
=
7
x
−
6
y = 7x - 6
y
=
7
x
−
6
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
How many solutions does the system of equations below have?
\newline
y
=
−
x
+
1
y = -x + 1
y
=
−
x
+
1
\newline
y
=
−
x
+
1
y = -x + 1
y
=
−
x
+
1
\newline
Choices:
\newline
(A)no solution
\newline
(B)one solution
\newline
(C)infinitely many solutions
Get tutor help
x
2
+
k
x
−
14
=
0
x^{2}+kx-14=0
x
2
+
k
x
−
14
=
0
\newline
In the given equation,
k
k
k
is a constant. The equation has solutions at
7
7
7
and
−
2
-2
−
2
. What is the value of
k
k
k
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
9
-9
−
9
\newline
(B)
−
5
-5
−
5
\newline
(C)
5
5
5
\newline
(D)
9
9
9
Get tutor help
6
x
+
2
y
=
3
6 x+2 y=3
6
x
+
2
y
=
3
\newline
6
x
+
y
=
3
6 x+y=3
6
x
+
y
=
3
\newline
Consider the given system of equations. How many
(
x
,
y
)
(x, y)
(
x
,
y
)
solutions does this system have?
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
\newline
(D) None of the above
Get tutor help
Find a point
c
c
c
satisfying the conclusion of the MVT for the given function and interval.
\newline
y
(
x
)
=
x
,
[
49
,
289
]
y(x)=\sqrt{x}, \quad[49,289]
y
(
x
)
=
x
,
[
49
,
289
]
Get tutor help
Derin is travelling abroad with a
$
25
\$25
$25
calling card. The rate to call her boyfriend in Japan is
$
0.19
\$0.19
$0.19
per minute. The rate to call her family in Turkey is
$
0.12
\$0.12
$0.12
per minute. Derin wants to spend at least
30
30
30
minutes calling her family in Turkey. Which of the following systems of inequalities best represents the relationship between
J
J
J
, the number of minutes Derin calls Japan, and
T
T
T
, the number of minutes Derin calls Turkey?
\newline
Choose
1
1
1
answer:
\newline
A
A
A
0.19
J
+
0.12
T
≤
25
0.19J+0.12T \leq 25
0.19
J
+
0.12
T
≤
25
\newline
T
≤
30
T \leq 30
T
≤
30
\newline
B
B
B
0.19
J
+
0.12
T
≥
25
0.19J+0.12T \geq 25
0.19
J
+
0.12
T
≥
25
\newline
T
≤
30
T \leq 30
T
≤
30
\newline
C
C
C
0.19
J
+
0.12
T
≤
25
0.19J+0.12T \leq 25
0.19
J
+
0.12
T
≤
25
\newline
T
≥
30
T \geq 30
T
≥
30
\newline
D
D
D
\newline
0.19
J
+
0.12
T
≥
25
0.19J+0.12T \geq 25
0.19
J
+
0.12
T
≥
25
\newline
T
>
30
T > 30
T
>
30
Get tutor help
y
=
−
3
x
y = -3x
y
=
−
3
x
\newline
4
x
−
y
=
14
4x-y=14
4
x
−
y
=
14
\newline
The given system of equations has solution
(
x
,
y
)
(x,y)
(
x
,
y
)
. What is the value of
x
x
x
?
Get tutor help
−
6.4
x
=
4
y
+
2.1
-6.4 x=4 y+2.1
−
6.4
x
=
4
y
+
2.1
\newline
k
y
+
3.2
x
=
5.8
k y+3.2 x=5.8
k
y
+
3.2
x
=
5.8
\newline
For what value of
k
k
k
does the system of linear equations in the variable and
y
y
y
have no solutions?
Get tutor help
s
−
2
=
9
s-2=9
s
−
2
=
9
\newline
3
r
−
4
s
=
16
3 r-4 s=16
3
r
−
4
s
=
16
\newline
Which of the following accurately describes all solutions to the system of equations shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
r
=
8
r=8
r
=
8
and
s
=
2
s=2
s
=
2
\newline
(B)
r
=
20
r=20
r
=
20
and
s
=
11
s=11
s
=
11
\newline
(C) There are infinite solutions to the system.
\newline
(D) There are no solutions to the system.
Get tutor help
What are the critical points for the plane curve defined by the equations
x
(
t
)
=
4
sin
(
2
t
)
,
y
(
t
)
=
−
t
x(t)=4 \sin (2 t), y(t)=-t
x
(
t
)
=
4
sin
(
2
t
)
,
y
(
t
)
=
−
t
, and
0
≤
t
<
2
π
0 \leq t<2 \pi
0
≤
t
<
2
π
? Write your answer as a list of values of
t
t
t
, separated by commas. For example, if you found
t
=
1
t=1
t
=
1
or
t
=
2
t=2
t
=
2
, you would enter
1
1
1
,
2
2
2
.
Get tutor help
k
2
=
m
2
+
n
2
k^{2}=m^{2}+n^{2}
k
2
=
m
2
+
n
2
\newline
For any right triangle, the given equation relates the length of the hypotenuse,
k
k
k
, to the lengths of the other two sides of the triangle,
m
m
m
and
n
n
n
. Which of the following equations correctly gives
m
m
m
in terms of
k
k
k
and
n
n
n
?
\newline
Choose
1
1
1
answer:
\newline
(A)
m
=
k
−
n
m=k-n
m
=
k
−
n
\newline
(B)
m
=
k
2
−
n
2
m=\sqrt{k^{2}}-n^{2}
m
=
k
2
−
n
2
\newline
(C)
m
=
k
2
−
n
2
m=\sqrt{k^{2}-n^{2}}
m
=
k
2
−
n
2
\newline
(D)
m
=
k
2
+
n
2
m=\sqrt{k^{2}+n^{2}}
m
=
k
2
+
n
2
\newline
Show calculator
Get tutor help
Consider the system of equations. Which of the following statements is true?
\newline
Choose
1
1
1
answer:
\newline
(A) There is only one solution
(
e
,
f
)
(e,f)
(
e
,
f
)
and
e
⋅
f
e\cdot f
e
⋅
f
is positive.
\newline
(B) There is only one solution
(
e
,
f
)
(e,f)
(
e
,
f
)
and
e
⋅
f
e\cdot f
e
⋅
f
is negative.
\newline
(C) There are infinitely many solutions.
\newline
(D) There are no solutions.
Get tutor help
In the
x
y
x y
x
y
-plane, Circle
A
A
A
is represented by the equation
(
x
−
2
)
2
+
(
y
+
3
)
2
=
1
(x-2)^{2}+(y+3)^{2}=1
(
x
−
2
)
2
+
(
y
+
3
)
2
=
1
, and Circle
B
B
B
is represented by the equation
(
x
+
2
)
2
+
(
y
+
5
)
2
=
1
(x+2)^{2}+(y+5)^{2}=1
(
x
+
2
)
2
+
(
y
+
5
)
2
=
1
. Which of the following statements about the two circles is true?
\newline
Choose
1
1
1
answer:
\newline
(A) Circle
B
B
B
is
2
2
2
units to the left of and
2
2
2
units below Circle
A
A
A
.
\newline
(B) Circle
B
B
B
is
2
2
2
units to the right of and
2
2
2
units above Circle
A
A
A
.
\newline
(C) Circle
B
B
B
is
4
4
4
units to the left of and
2
2
2
units below Circle
A
A
A
0
0
0
.
\newline
(D) Circle
B
B
B
is
4
4
4
units to the right of and
2
2
2
units above Circle
A
A
A
.
Get tutor help
Which of the following equations represents a line that passes through the points
(
−
2
,
−
2
)
(-2,-2)
(
−
2
,
−
2
)
and
(
−
3
,
−
7
)
(-3,-7)
(
−
3
,
−
7
)
?
\newline
I.
y
+
8
=
5
(
x
+
3
)
y+8=5(x+3)
y
+
8
=
5
(
x
+
3
)
\newline
II.
5
x
−
y
=
−
8
5 x-y=-8
5
x
−
y
=
−
8
\newline
Neither
\newline
I only
\newline
II only
\newline
I and II
Get tutor help
How many solutions does the following equation have?
\newline
12
z
−
6
+
15
z
=
27
z
−
5
12z-6+15z=27z-5
12
z
−
6
+
15
z
=
27
z
−
5
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
The Capulet and Montague families love writing.
\newline
Last year, each Capulet wrote
4
4
4
essays, each Montague wrote
6
6
6
essays, and both families wrote
100
100
100
essays in total.
\newline
This year, each Capulet wrote
8
8
8
essays, each Montague wrote
12
12
12
essays, and both families wrote
200
200
200
essays in total.
\newline
How many Capulets and Montagues are there?
\newline
Choose
1
1
1
answer:
\newline
(A) There is not enough information to determine the exact number of Capulets and Montagues.
\newline
(B) The given information describes an impossible situation.
\newline
(C) There are
16
16
16
Capulets and
6
6
6
Montagues.
\newline
(D) There are
6
6
6
Capulets and
16
16
16
Montagues.
Get tutor help
19
−
38
y
=
76
x
19-38y=76x
19
−
38
y
=
76
x
\newline
24
x
=
−
6
(
2
y
−
1
)
24x=-6(2y-1)
24
x
=
−
6
(
2
y
−
1
)
\newline
Consider the system of equations. How many solutions
(
x
,
y
)
(x,y)
(
x
,
y
)
does this system have?
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B) Exactly
1
1
1
\newline
(C) Exactly
2
2
2
\newline
(D) Infinitely many
Get tutor help
The differentiable functions
x
x
x
and
y
y
y
are related by the following equation:
sin
(
x
)
+
cos
(
y
)
=
2
\sin(x) + \cos(y) = \sqrt{2}
sin
(
x
)
+
cos
(
y
)
=
2
. Also,
d
x
d
t
=
5
\frac{dx}{dt} = 5
d
t
d
x
=
5
. Find
d
y
d
t
\frac{dy}{dt}
d
t
d
y
when
y
=
π
4
y = \frac{\pi}{4}
y
=
4
π
and
0
0
0
.
Get tutor help
How many solutions does the following equation have?
\newline
5
x
+
8
−
7
x
=
−
4
x
+
1
5x+8-7x=-4x+1
5
x
+
8
−
7
x
=
−
4
x
+
1
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
The functions
y
=
3
(
x
+
2
)
2
−
4
y=3(x+2)^{2}-4
y
=
3
(
x
+
2
)
2
−
4
and
y
=
−
3
(
x
+
2
)
2
−
4
y=-3(x+2)^{2}-4
y
=
−
3
(
x
+
2
)
2
−
4
are graphed in the
x
y
x y
x
y
-plane. Which of the following must be true of the graphs of the vertexes and axes of symmetry of the two functions?
\newline
Choose
1
1
1
answer:
\newline
(A) The functions will have different vertexes.
\newline
(B) The functions will have different axes of symmetry.
\newline
(C) The function
y
=
3
(
x
+
2
)
2
−
4
y=3(x+2)^{2}-4
y
=
3
(
x
+
2
)
2
−
4
will have a minimum value, and the function
y
=
−
3
(
x
+
2
)
2
−
4
y=-3(x+2)^{2}-4
y
=
−
3
(
x
+
2
)
2
−
4
will have a maximum value.
\newline
(D) The function
y
=
3
(
x
+
2
)
2
−
4
y=3(x+2)^{2}-4
y
=
3
(
x
+
2
)
2
−
4
will have a maximum value, and the graph of
y
=
−
3
(
x
+
2
)
2
−
4
y=-3(x+2)^{2}-4
y
=
−
3
(
x
+
2
)
2
−
4
will have a minimum value.
Get tutor help
Let
x
1
x_1
x
1
and
x
2
x_2
x
2
be solutions to the equation shown, with
x
1
>
x
2
x_1 > x_2
x
1
>
x
2
. What is the value of
x
1
+
x
2
x_1+x_2
x
1
+
x
2
?
16
x
2
−
8
x
−
3
=
0
16x^2-8x-3=0
16
x
2
−
8
x
−
3
=
0
Get tutor help
Find all solutions with
−
π
2
≤
θ
≤
π
2
-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}
−
2
π
≤
θ
≤
2
π
. Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas.
\newline
sin
(
θ
)
=
0
\sin(\theta)=0
sin
(
θ
)
=
0
Get tutor help
d
y
d
t
=
3
t
\frac{d y}{d t}=3 t
d
t
d
y
=
3
t
and
y
(
2
)
=
3
y(2)=3
y
(
2
)
=
3
.
\newline
What is
t
t
t
when
y
=
6
y=6
y
=
6
?
\newline
Choose all answers that apply:
\newline
(A)
t
=
−
2
t=-2
t
=
−
2
\newline
(B)
t
=
6
t=\sqrt{6}
t
=
6
\newline
(C)
t
=
6
t=6
t
=
6
\newline
(D)
t
=
−
6
t=-\sqrt{6}
t
=
−
6
\newline
(E)
t
=
2
t=2
t
=
2
Get tutor help
Alison tried to find all the points on the curve given by
x
2
+
4
y
2
=
7
+
3
x
y
x^{2}+4 y^{2}=7+3 x y
x
2
+
4
y
2
=
7
+
3
x
y
where the line tangent to the curve is horizontal. This is her solution:
\newline
Step
1
1
1
: Finding an expression for
d
y
d
x
\frac{d y}{d x}
d
x
d
y
.
\newline
d
y
d
x
=
3
y
−
2
x
8
y
−
3
x
\frac{d y}{d x}=\frac{3 y-2 x}{8 y-3 x}
d
x
d
y
=
8
y
−
3
x
3
y
−
2
x
\newline
Step
2
2
2
: Forming a system of equations.
\newline
{
x
2
+
4
y
2
=
7
+
3
x
y
3
y
−
2
x
=
0
8
y
−
3
x
≠
0
\left\{\begin{array}{l} x^{2}+4 y^{2}=7+3 x y \\ 3 y-2 x=0 \\ 8 y-3 x \neq 0 \end{array}\right.
⎩
⎨
⎧
x
2
+
4
y
2
=
7
+
3
x
y
3
y
−
2
x
=
0
8
y
−
3
x
=
0
\newline
Step
3
3
3
: Solving the system.
\newline
(
3
,
2
)
(3,2)
(
3
,
2
)
and
(
−
3
,
−
2
)
(-3,-2)
(
−
3
,
−
2
)
\newline
Is Alison's solution correct? If not, at which step did she make a mistake?
\newline
Choose
1
1
1
answer:
\newline
(A) The solution is correct.
\newline
(B) Step
1
1
1
is incorrect.
\newline
(C) Step
2
2
2
is incorrect.
\newline
(D) Step
3
3
3
is incorrect.
Get tutor help
Let
g
(
x
)
=
2
x
g(x)=2^{x}
g
(
x
)
=
2
x
.
\newline
Can we use the mean value theorem to say the equation
g
′
(
x
)
=
16
g^{\prime}(x)=16
g
′
(
x
)
=
16
has a solution where
3
<
x
<
5
3<x<5
3
<
x
<
5
?
\newline
Choose
1
1
1
answer:
\newline
(A) No, since the function is not differentiable on that interval.
\newline
(B) No, since the average rate of change of
g
g
g
over the interval
3
≤
x
≤
5
3 \leq x \leq 5
3
≤
x
≤
5
isn't equal to
1
6
‾
1 \overline{6}
1
6
.
\newline
(C) Yes, both conditions for using the mean value theorem have been met.
Get tutor help
Let
h
(
x
)
=
x
⋅
sin
(
x
)
h(x)=x \cdot \sin (x)
h
(
x
)
=
x
⋅
sin
(
x
)
.
\newline
Below is Eliza's attempt to write a formal justification for the fact that the equation
h
(
x
)
=
1
h(x)=1
h
(
x
)
=
1
has a solution where
0
≤
x
≤
2
0 \leq x \leq 2
0
≤
x
≤
2
.
\newline
Is Eliza's justification complete? If not, why?
\newline
Eliza's justification:
\newline
h
h
h
is defined for all real numbers, and polynomial and trigonometric functions are continuous at all points in their domains. Furthermore,
h
(
0
)
=
0
h(0)=0
h
(
0
)
=
0
and
h
(
2
)
≈
1.82
h(2) \approx 1.82
h
(
2
)
≈
1.82
, so
1
1
1
is between
h
(
0
)
h(0)
h
(
0
)
and
h
(
2
)
h(2)
h
(
2
)
.
\newline
So, according to the intermediate value theorem,
h
(
x
)
=
1
h(x)=1
h
(
x
)
=
1
must have a solution somewhere between
x
=
0
x=0
x
=
0
and
x
=
2
x=2
x
=
2
.
\newline
Choose
1
1
1
answer:
\newline
(A) Yes, Eliza's justification is complete.
\newline
(B) No, Eliza didn't establish that
1
1
1
is between
h
(
0
)
h(0)
h
(
0
)
and
h
(
2
)
h(2)
h
(
2
)
.
\newline
(C) No, Eliza didn't establish that
h
h
h
is continuous.
Get tutor help
The following are all angle measures (in degrees, rounded to the nearest tenth) whose cosine is
0
0
0
.
10
10
10
.
\newline
Which is the principal value of
arccos
(
0.10
)
\arccos (0.10)
arccos
(
0.10
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
635.
7
∘
-635.7^{\circ}
−
635.
7
∘
\newline
(B)
−
275.
7
∘
-275.7^{\circ}
−
275.
7
∘
\newline
(C)
84.
3
∘
84.3^{\circ}
84.
3
∘
\newline
(D)
444.
3
∘
444.3^{\circ}
444.
3
∘
Get tutor help
The following are all angle measures (in degrees, rounded to the nearest tenth) whose cosine is
0
0
0
.
69
69
69
.
\newline
Which is the principal value of
cos
−
1
(
0.69
)
\cos ^{-1}(0.69)
cos
−
1
(
0.69
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1033.
6
∘
-1033.6^{\circ}
−
1033.
6
∘
\newline
(B)
−
673.
6
∘
-673.6^{\circ}
−
673.
6
∘
\newline
(C)
−
313.
6
∘
-313.6^{\circ}
−
313.
6
∘
\newline
(D)
46.
4
∘
46.4^{\circ}
46.
4
∘
Get tutor help
The following are all angle measures (in degrees, rounded to the nearest tenth) whose tangent is
−
44
-44
−
44
.
\newline
Which is the principal value of
tan
−
1
(
−
44
)
\tan ^{-1}(-44)
tan
−
1
(
−
44
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
448.
7
∘
-448.7^{\circ}
−
448.
7
∘
\newline
(B)
−
268.
7
∘
-268.7^{\circ}
−
268.
7
∘
\newline
(C)
−
88.
7
∘
-88.7^{\circ}
−
88.
7
∘
\newline
(D)
91.
3
∘
91.3^{\circ}
91.
3
∘
Get tutor help
Previous
1
2