Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Csc, sec, and cot of special angles
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
51
0
∘
510^{\circ}
51
0
∘
\newline
Answer:
Get tutor help
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
27
0
∘
270^{\circ}
27
0
∘
\newline
Answer:
Get tutor help
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
1
5
∘
15^{\circ}
1
5
∘
\newline
Answer:
Get tutor help
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
34
5
∘
345^{\circ}
34
5
∘
\newline
Answer:
Get tutor help
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
22
5
∘
225^{\circ}
22
5
∘
\newline
Answer:
Get tutor help
Convert the following angle from degrees to radians. Express your answer in simplest form.
\newline
49
5
∘
495^{\circ}
49
5
∘
\newline
Answer:
Get tutor help
What is the angle measure of each angle of a regular pentagon?
\newline
(A)
9
0
∘
90^{\circ}
9
0
∘
\newline
(B)
10
8
∘
108^{\circ}
10
8
∘
\newline
(C)
12
0
∘
120^{\circ}
12
0
∘
\newline
(D)
13
5
∘
135^{\circ}
13
5
∘
Get tutor help
Fully simplify.
\newline
(
4
x
3
+
y
3
)
2
\left(4 x^{3}+y^{3}\right)^{2}
(
4
x
3
+
y
3
)
2
\newline
Answer:
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
+
2
x
+
10
y=x^{2}+2 x+10
y
=
x
2
+
2
x
+
10
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
−
3
x
−
1
y=x^{2}-3 x-1
y
=
x
2
−
3
x
−
1
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
−
7
x
−
5
y=x^{2}-7 x-5
y
=
x
2
−
7
x
−
5
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
−
6
x
+
1
y=x^{2}-6 x+1
y
=
x
2
−
6
x
+
1
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
−
x
−
7
y=x^{2}-x-7
y
=
x
2
−
x
−
7
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
+
x
−
10
y=x^{2}+x-10
y
=
x
2
+
x
−
10
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
−
8
x
+
5
y=x^{2}-8 x+5
y
=
x
2
−
8
x
+
5
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
+
2
x
−
4
y=x^{2}+2 x-4
y
=
x
2
+
2
x
−
4
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
+
3
x
−
10
y=x^{2}+3 x-10
y
=
x
2
+
3
x
−
10
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
−
7
x
−
2
y=x^{2}-7 x-2
y
=
x
2
−
7
x
−
2
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
+
3
x
−
5
y=x^{2}+3 x-5
y
=
x
2
+
3
x
−
5
\newline
Answer:
y
=
y=
y
=
Get tutor help
Complete the square to re-write the quadratic function in vertex form:
\newline
y
=
x
2
−
3
x
−
5
y=x^{2}-3 x-5
y
=
x
2
−
3
x
−
5
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve the equation
−
2
x
2
+
7
x
−
1
=
−
3
x
2
+
14
-2 x^{2}+7 x-1=-3 x^{2}+14
−
2
x
2
+
7
x
−
1
=
−
3
x
2
+
14
to the nearest tenth.
\newline
Answer:
x
=
x=
x
=
Get tutor help
Evaluate the left hand side to find the value of
a
a
a
in the equation in simplest form.
\newline
x
x
5
2
=
x
a
x x^{\frac{5}{2}}=x^{a}
x
x
2
5
=
x
a
\newline
Answer:
Get tutor help
Solve for all values of
x
x
x
:
\newline
(
7
x
+
8
)
2
−
(
7
x
+
8
)
=
0
(7 x+8)^{2}-(7 x+8)=0
(
7
x
+
8
)
2
−
(
7
x
+
8
)
=
0
\newline
Answer:
x
=
x=
x
=
Get tutor help
∫
r
2
−
x
2
d
x
=
\int \sqrt{r^{2}-x^{2}} d x=
∫
r
2
−
x
2
d
x
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
16
16
16
.
\newline
y
=
x
+
6
y=\sqrt{x}+6
y
=
x
+
6
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
57
57
57
.
\newline
y
=
x
−
21
y=\sqrt{x-21}
y
=
x
−
21
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
190
190
190
.
\newline
y
=
x
−
46
y=\sqrt{x-46}
y
=
x
−
46
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
56
56
56
.
\newline
y
=
x
−
47
y=\sqrt{x-47}
y
=
x
−
47
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
30
-30
−
30
.
\newline
y
=
x
+
31
y=\sqrt{x+31}
y
=
x
+
31
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
35
35
35
.
\newline
y
=
x
−
26
y=\sqrt{x-26}
y
=
x
−
26
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
0
0
0
.
\newline
y
=
x
+
16
y=\sqrt{x+16}
y
=
x
+
16
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
30
30
30
.
\newline
y
=
x
+
19
y=\sqrt{x+19}
y
=
x
+
19
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
63
63
63
.
\newline
y
=
x
−
47
y=\sqrt{x-47}
y
=
x
−
47
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
−
43
-43
−
43
.
\newline
y
=
x
+
47
y=\sqrt{x+47}
y
=
x
+
47
\newline
Answer:
y
=
y=
y
=
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
100
100
100
.
\newline
y
=
x
+
44
y=\sqrt{x+44}
y
=
x
+
44
\newline
Answer:
y
=
y=
y
=
Get tutor help
Fully simplify using only positive exponents.
\newline
45
x
2
y
8
18
x
2
y
8
\frac{45 x^{2} y^{8}}{18 x^{2} y^{8}}
18
x
2
y
8
45
x
2
y
8
\newline
Answer:
Get tutor help
Evaluate. Write your answer as a whole number or as a simplified fraction.
\newline
7
8
7
6
=
□
\frac{7^{8}}{7^{6}}=\square
7
6
7
8
=
□
Get tutor help
Given the function
f
(
x
)
=
−
2
5
x
f(x)=-\frac{2}{5 \sqrt{x}}
f
(
x
)
=
−
5
x
2
, find
f
′
(
x
)
f^{\prime}(x)
f
′
(
x
)
. Express your answer in radical form without using negative exponents, simplifying all fractions.
\newline
Answer:
f
′
(
x
)
=
f^{\prime}(x)=
f
′
(
x
)
=
Get tutor help
Given the function
f
(
x
)
=
−
1
x
3
f(x)=-\frac{1}{\sqrt{x^{3}}}
f
(
x
)
=
−
x
3
1
, find
f
′
(
x
)
f^{\prime}(x)
f
′
(
x
)
. Express your answer in radical form without using negative exponents, simplifying all fractions.
\newline
Answer:
f
′
(
x
)
=
f^{\prime}(x)=
f
′
(
x
)
=
Get tutor help
Given the function
f
(
x
)
=
x
−
2
x
3
f(x)=\sqrt{x}-2 \sqrt{x^{3}}
f
(
x
)
=
x
−
2
x
3
, find
f
′
(
3
)
f^{\prime}(3)
f
′
(
3
)
. Express your answer as a single fraction in simplest radical form.
\newline
Answer:
f
′
(
3
)
=
f^{\prime}(3)=
f
′
(
3
)
=
Get tutor help
4
y
2
+
9
=
6
x
+
3
4
y
=
2
x
+
1
\begin{aligned} 4y^2+9&=6x+3\ 4y&=2x+1 \end{aligned}
4
y
2
+
9
=
6
x
+
3
4
y
=
2
x
+
1
Get tutor help
In
△
C
D
E
,
m
∠
C
=
(
8
x
+
19
)
∘
,
m
∠
D
=
(
2
x
+
7
)
∘
\triangle \mathrm{CDE}, \mathrm{m} \angle C=(8 x+19)^{\circ}, \mathrm{m} \angle D=(2 x+7)^{\circ}
△
CDE
,
m
∠
C
=
(
8
x
+
19
)
∘
,
m
∠
D
=
(
2
x
+
7
)
∘
, and
m
∠
E
=
(
4
x
−
14
)
∘
\mathrm{m} \angle E=(4 x-14)^{\circ}
m
∠
E
=
(
4
x
−
14
)
∘
. What is the value of
x
x
x
?
\newline
Answer:
Get tutor help
In
△
P
Q
R
,
P
R
‾
\triangle \mathrm{PQR}, \overline{P R}
△
PQR
,
PR
is extended through point
R
\mathrm{R}
R
to point
S
,
m
∠
R
P
Q
=
(
3
x
+
15
)
∘
\mathrm{S}, \mathrm{m} \angle R P Q=(3 x+15)^{\circ}
S
,
m
∠
RPQ
=
(
3
x
+
15
)
∘
,
m
∠
Q
R
S
=
(
9
x
−
13
)
∘
\mathrm{m} \angle Q R S=(9 x-13)^{\circ}
m
∠
QRS
=
(
9
x
−
13
)
∘
, and
m
∠
P
Q
R
=
(
2
x
−
4
)
∘
\mathrm{m} \angle P Q R=(2 x-4)^{\circ}
m
∠
PQR
=
(
2
x
−
4
)
∘
. What is the value of
x
?
x ?
x
?
\newline
Answer:
Get tutor help
In
△
L
M
N
,
L
N
‾
\triangle \mathrm{LMN}, \overline{L N}
△
LMN
,
L
N
is extended through point
N
\mathrm{N}
N
to point
O
,
m
∠
M
N
O
=
(
6
x
−
13
)
∘
\mathrm{O}, \mathrm{m} \angle M N O=(6 x-13)^{\circ}
O
,
m
∠
MNO
=
(
6
x
−
13
)
∘
,
m
∠
N
L
M
=
(
x
+
7
)
∘
\mathrm{m} \angle N L M=(x+7)^{\circ}
m
∠
N
L
M
=
(
x
+
7
)
∘
, and
m
∠
L
M
N
=
(
2
x
+
4
)
∘
\mathrm{m} \angle L M N=(2 x+4)^{\circ}
m
∠
L
MN
=
(
2
x
+
4
)
∘
. Find
m
∠
L
M
N
\mathrm{m} \angle L M N
m
∠
L
MN
.
\newline
Answer:
Get tutor help
In
△
S
T
U
,
m
∠
S
=
(
4
x
+
6
)
∘
,
m
∠
T
=
(
4
x
−
1
)
∘
\triangle \mathrm{STU}, \mathrm{m} \angle S=(4 x+6)^{\circ}, \mathrm{m} \angle T=(4 x-1)^{\circ}
△
STU
,
m
∠
S
=
(
4
x
+
6
)
∘
,
m
∠
T
=
(
4
x
−
1
)
∘
, and
m
∠
U
=
(
x
+
4
)
∘
\mathrm{m} \angle U=(x+4)^{\circ}
m
∠
U
=
(
x
+
4
)
∘
. What is the value of
x
x
x
?
\newline
Answer:
Get tutor help
72
x
3
z
3
=
\sqrt{72x^{3}z^{3}}=
72
x
3
z
3
=
Get tutor help
b
−
6
⋅
b
11
=
□
b^{-6}\cdot b^{11}=\Box
b
−
6
⋅
b
11
=
□
Get tutor help
b
−
6
⋅
b
11
=
□
b^{-6}\cdot b^{11}=\Box
b
−
6
⋅
b
11
=
□
Get tutor help
4
11
4
−
8
=
□
\dfrac{4^{11}}{4^{-8}}=\Box
4
−
8
4
11
=
□
Get tutor help
4
11
4
−
8
=
□
\dfrac{4^{11}}{4^{-8}}=\Box
4
−
8
4
11
=
□
Get tutor help
Previous
1
...
2
3
4
Next