Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
-2x^(2)+7x-1=-3x^(2)+14 to the nearest tenth.
Answer: 
x=

Solve the equation 2x2+7x1=3x2+14 -2 x^{2}+7 x-1=-3 x^{2}+14 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 2x2+7x1=3x2+14 -2 x^{2}+7 x-1=-3 x^{2}+14 to the nearest tenth.\newlineAnswer: x= x=
  1. Set Equation to Zero: First, we need to set the equation to zero by moving all terms to one side of the equation.\newline2x2+7x1(3x2+14)=0-2x^2 + 7x - 1 - (-3x^2 + 14) = 0
  2. Simplify Equation: Simplify the equation by combining like terms. 2x2+7x1+3x214=0-2x^2 + 7x - 1 + 3x^2 - 14 = 0
  3. Combine Terms: Combine the x2x^2 terms and the constant terms.\newline(3x22x2)+7x(14+1)=0(3x^2 - 2x^2) + 7x - (14 + 1) = 0\newlinex2+7x15=0x^2 + 7x - 15 = 0
  4. Solve Quadratic Equation: Now we need to solve the quadratic equation x2+7x15=0x^2 + 7x - 15 = 0. We can use the quadratic formula, where a=1a = 1, b=7b = 7, and c=15c = -15. \newlinex=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  5. Substitute Values: Substitute the values of aa, bb, and cc into the quadratic formula.x=7±724(1)(15)2(1)x = \frac{-7 \pm \sqrt{7^2 - 4(1)(-15)}}{2(1)}
  6. Calculate Discriminant: Calculate the discriminant (the part under the square root). Discriminant = 724(1)(15)=49+60=1097^2 - 4(1)(-15) = 49 + 60 = 109
  7. Substitute Discriminant: Substitute the discriminant back into the quadratic formula. x=7±1092x = \frac{-7 \pm \sqrt{109}}{2}
  8. Calculate Solutions: Calculate the two possible solutions for xx.x=7+1092x = \frac{{-7 + \sqrt{109}}}{{2}} or x=71092x = \frac{{-7 - \sqrt{109}}}{{2}}
  9. Find Numerical Values: Use a calculator to find the numerical values of xx to the nearest tenth.x \approx (\-7 + 10.4) / 2 or x \approx (\-7 - 10.4) / 2x1.7x \approx 1.7 or x8.7x \approx -8.7

More problems from Csc, sec, and cot of special angles