Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Convert the following angle from degrees to radians. Express your answer in simplest form.

345^(@)
Answer:

Convert the following angle from degrees to radians. Express your answer in simplest form.\newline345 345^{\circ} \newlineAnswer:

Full solution

Q. Convert the following angle from degrees to radians. Express your answer in simplest form.\newline345 345^{\circ} \newlineAnswer:
  1. Set up conversion factor: To convert degrees to radians, we use the conversion factor that π radians is equivalent to 180180 degrees. Therefore, we can set up the conversion as follows:\newlineradians=degrees×(π radians180 degrees) \text{radians} = \text{degrees} \times \left( \frac{\pi \text{ radians}}{180 \text{ degrees}} \right)
  2. Plug in given angle: Now, we plug in the given angle of 345345 degrees into the conversion formula:\newlineradians=345×(π180) \text{radians} = 345^\circ \times \left( \frac{\pi}{180} \right)
  3. Simplify expression: Next, we simplify the expression by canceling out any common factors between the numerator and the denominator. In this case, both 345345 and 180180 can be divided by 1515:\newlineradians=34515×(π18015) \text{radians} = \frac{345}{15} \times \left( \frac{\pi}{\frac{180}{15}} \right) \newlineradians=23×(π12) \text{radians} = 23 \times \left( \frac{\pi}{12} \right)
  4. Multiply to get radians: Finally, we multiply the two numbers together to get the angle in radians:\newlineradians=23×π12 \text{radians} = 23 \times \frac{\pi}{12} \newlineradians=23π12 \text{radians} = \frac{23\pi}{12} \newlineThis is the simplest form of the angle in radians.

More problems from Csc, sec, and cot of special angles