Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4y2+9amp;=6x+3 4yamp;=2x+1\begin{aligned} 4y^2+9&=6x+3\ 4y&=2x+1 \end{aligned}

Full solution

Q. 4y2+9=6x+3 4y=2x+1\begin{aligned} 4y^2+9&=6x+3\ 4y&=2x+1 \end{aligned}
  1. Simplify first equation: To solve the system of equations, we first look at the two equations given:\newline\begin{aligned} \newline44y^22 + 99 &= 66x + 33, (\newline\)44y &= 22x + 11.\newline\end{aligned}\newlineWe can simplify the first equation by subtracting 33 from both sides to isolate the term with yy.\newline\begin{aligned} \newline44y^22 + 99 - 33 &= 66x + 33 - 33, (\newline\)44y^22 + 66 &= 66x.\newline\end{aligned}
  2. Divide by 66: Now, we can divide the entire equation by 66 to simplify it further:\newline\begin{aligned} \newline\frac{44y^22 + 66}{66} &= \frac{66x}{66}, (\newline\)\frac{22}{33}y^22 + 11 &= x.\newline\end{aligned}
  3. Substitute xx into yy: Next, we can substitute the expression for xx from the second equation into the first equation:\newline\begin{aligned} 4y &= 2x + 1, \ 4y &= 2\left(\frac{2}{3}y^2 + 1\right) + 1. \end{aligned}
  4. Distribute on right side: Now, we distribute the 22 on the right side of the equation:\newline\begin{aligned} \newline44y &= 22 \cdot \frac{22}{33}y^22 + 22 \cdot 11 + 11, (\newline\)44y &= \frac{44}{33}y^22 + 22 + 11, (\newline\)44y &= \frac{44}{33}y^22 + 33.\newline\end{aligned}
  5. Get all terms with yy: To solve for yy, we need to get all terms involving yy on one side and the constants on the other side. We can subtract 4y4y from both sides:\newline\begin{aligned} 4y - 4y &= \frac{4}{3}y^2 + 3 - 4y, \ 0 &= \frac{4}{3}y^2 - 4y + 3. \end{aligned}
  6. Multiply by 33: We can multiply the entire equation by 33 to eliminate the fraction:\newline\begin{aligned} \newline33 \cdot 00 &= 33 \cdot \left(\frac{44}{33}y^22 - 44y + 33\right), (\newline\)00 &= 44y^22 - 1212y + 99.\newline\end{aligned}
  7. Use quadratic formula for y: Now we have a quadratic equation in standard form. We can use the quadratic formula to solve for y:\newline\begin{aligned} \newliney &= \frac{-b \pm \sqrt{b^22 - 44ac}}{22a}, (\newline\)y &= \frac{-(12-12) \pm \sqrt{(12-12)^22 - 44 \cdot 44 \cdot 99}}{22 \cdot 44}, (\newline\)y &= \frac{1212 \pm \sqrt{144144 - 144144}}{88}, (\newline\)y &= \frac{1212 \pm \sqrt{00}}{88}, (\newline\)y &= \frac{1212 \pm 00}{88}, (\newline\)y &= \frac{1212}{88}, (\newline\)y &= \frac{33}{22}.\newline\end{aligned}
  8. Substitute yy into xx: Now that we have the value of yy, we can substitute it back into the second equation to find xx:4yamp;=2x+1, 432amp;=2x+1, 6amp;=2x+1.\begin{aligned} 4y &= 2x + 1, \ 4 \cdot \frac{3}{2} &= 2x + 1, \ 6 &= 2x + 1.\end{aligned}
  9. Isolate x term: Subtract 11 from both sides to isolate the term with xx:\newline\begin{aligned} \newline616 - 1 &= 2x+112x + 1 - 1, (\newline\)55 &= 2x2x.\newline\end{aligned}
  10. Divide by 22: Finally, divide both sides by 22 to solve for xx:52amp;=x.\begin{aligned} \frac{5}{2} &= x.\end{aligned}

More problems from Csc, sec, and cot of special angles