Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\CDE,m/_C=(8x+19)^(@),m/_D=(2x+7)^(@), and 
m/_E=(4x-14)^(@). What is the value of 
x ?
Answer:

In CDE,mC=(8x+19),mD=(2x+7) \triangle \mathrm{CDE}, \mathrm{m} \angle C=(8 x+19)^{\circ}, \mathrm{m} \angle D=(2 x+7)^{\circ} , and mE=(4x14) \mathrm{m} \angle E=(4 x-14)^{\circ} . What is the value of x x ?\newlineAnswer:

Full solution

Q. In CDE,mC=(8x+19),mD=(2x+7) \triangle \mathrm{CDE}, \mathrm{m} \angle C=(8 x+19)^{\circ}, \mathrm{m} \angle D=(2 x+7)^{\circ} , and mE=(4x14) \mathrm{m} \angle E=(4 x-14)^{\circ} . What is the value of x x ?\newlineAnswer:
  1. Write Triangle Angle Equation: The sum of the angles in any triangle is 180180 degrees. We can write this as an equation using the given angle measures:\newlinem/_C+m/_D+m/_E=180m/\_C + m/\_D + m/\_E = 180^\circ\newline(8x+19)+(2x+7)+(4x14)=180(8x + 19)^\circ + (2x + 7)^\circ + (4x - 14)^\circ = 180^\circ
  2. Simplify Equation: Combine like terms to simplify the equation:\newline8x+2x+4x+19+714=1808x + 2x + 4x + 19 + 7 - 14 = 180\newline14x+12=18014x + 12 = 180
  3. Isolate x Term: Subtract 1212 from both sides to isolate the term with xx: \newline14x+1212=1801214x + 12 - 12 = 180 - 12\newline14x=16814x = 168
  4. Solve for x: Divide both sides by 1414 to solve for x:\newline14x14=16814\frac{14x}{14} = \frac{168}{14}\newlinex=12x = 12

More problems from Csc, sec, and cot of special angles