Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

intsqrt(r^(2)-x^(2))dx=

r2x2dx= \int \sqrt{r^{2}-x^{2}} d x=

Full solution

Q. r2x2dx= \int \sqrt{r^{2}-x^{2}} d x=
  1. Recognize Trigonometric Substitution: To solve the integral r2x2dx\int \sqrt{r^2 - x^2} \, dx, we recognize that this is a standard integral that can be solved using a trigonometric substitution. Specifically, we can let x=rsin(θ)x = r \sin(\theta), which implies dx=rcos(θ)dθdx = r \cos(\theta) \, d\theta. This substitution will simplify the square root expression.
  2. Substitute xx into Integral: We substitute x=rsin(θ)x = r \sin(\theta) into the integral, which gives us r2(rsin(θ))2rcos(θ)dθ\int \sqrt{r^2 - (r \sin(\theta))^2} r \cos(\theta) \, d\theta. Simplifying the expression under the square root gives us r2(1sin2(θ))rcos(θ)dθ\int \sqrt{r^2(1 - \sin^2(\theta))} r \cos(\theta) \, d\theta.
  3. Simplify Square Root Expression: We know that sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1, so 1sin2(θ)=cos2(θ)1 - \sin^2(\theta) = \cos^2(\theta). Substituting this into the integral, we get rcos(θ)rcos(θ)dθ\int r \cos(\theta) * r \cos(\theta) d\theta, which simplifies to r2cos2(θ)dθ\int r^2 \cos^2(\theta) d\theta.
  4. Integrate r2cos2(θ)r^2 \cos^2(\theta): Now we need to integrate r2cos2(θ)r^2 \cos^2(\theta) with respect to θ\theta. This can be done by using the half-angle identity for cosine, which states that cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}. Substituting this into the integral, we get r21+cos(2θ)2dθ\int r^2 \frac{1 + \cos(2\theta)}{2} d\theta.
  5. Split Integral into Two Parts: We can split the integral into two parts: (r22)dθ+(r22)cos(2θ)dθ\int(\frac{r^2}{2}) d\theta + \int(\frac{r^2}{2}) \cos(2\theta) d\theta. This simplifies the integration process.
  6. Use u-Substitution for cos(2θ)\cos(2\theta): Integrating the first part, (r22)dθ\int(\frac{r^2}{2}) d\theta, gives us (r22)θ(\frac{r^2}{2})\theta. For the second part, (r22)cos(2θ)dθ\int(\frac{r^2}{2}) \cos(2\theta) d\theta, we can use a u-substitution where u=2θu = 2\theta and du=2dθdu = 2 d\theta, which gives us (14)r2cos(u)du(\frac{1}{4})\int r^2 \cos(u) du.
  7. Combine Results of Integrals: The integral of cos(u)\cos(u) with respect to uu is sin(u)\sin(u), so we get r24sin(u)\frac{r^2}{4}\sin(u). Substituting back for uu, we have r24sin(2θ)\frac{r^2}{4}\sin(2\theta).
  8. Substitute back for θ\theta: Combining the results from the two parts of the integral, we have (r22)θ+(r24)sin(2θ)+C(\frac{r^2}{2})\theta + (\frac{r^2}{4})\sin(2\theta) + C, where CC is the constant of integration.
  9. Find θ\theta using Inverse Sine: We now need to substitute back for θ\theta using our original substitution x=rsin(θ)x = r \sin(\theta). To find θ\theta, we take the inverse sine of both sides, giving us θ=arcsin(xr)\theta = \arcsin(\frac{x}{r}).
  10. Substitute θ\theta into Result: Substituting θ=arcsin(xr)\theta = \arcsin(\frac{x}{r}) into our result, we get r22arcsin(xr)+r24sin(2arcsin(xr))+C\frac{r^2}{2}\arcsin(\frac{x}{r}) + \frac{r^2}{4}\sin(2\arcsin(\frac{x}{r})) + C.
  11. Simplify sin(2arcsin(xr))\sin(2\arcsin(\frac{x}{r})): To simplify sin(2arcsin(xr))\sin(2\arcsin(\frac{x}{r})), we use the identity sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta). Since sin(θ)=xr\sin(\theta) = \frac{x}{r}, we need to find cos(θ)\cos(\theta). From the Pythagorean identity, we know that cos(θ)=1sin2(θ)=1(xr)2\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - (\frac{x}{r})^2}.
  12. Finalize the Answer: Substituting sin(θ)=xr\sin(\theta) = \frac{x}{r} and cos(θ)=1(xr)2\cos(\theta) = \sqrt{1 - \left(\frac{x}{r}\right)^2} into sin(2θ)\sin(2\theta), we get sin(2arcsin(xr))=2(xr)1(xr)2\sin(2\arcsin(\frac{x}{r})) = 2\left(\frac{x}{r}\right)\sqrt{1 - \left(\frac{x}{r}\right)^2}.
  13. Finalize the Answer: Substituting sin(θ)=xr\sin(\theta) = \frac{x}{r} and cos(θ)=1(xr)2\cos(\theta) = \sqrt{1 - \left(\frac{x}{r}\right)^2} into sin(2θ)\sin(2\theta), we get sin(2arcsin(xr))=2(xr)1(xr)2\sin(2\arcsin(\frac{x}{r})) = 2\left(\frac{x}{r}\right)\sqrt{1 - \left(\frac{x}{r}\right)^2}. Finally, we substitute sin(2arcsin(xr))\sin(2\arcsin(\frac{x}{r})) back into our integral result to get the final answer: $\left(\frac{r^\(2\)}{\(2\)}\right)\arcsin\left(\frac{x}{r}\right) + \left(\frac{r^\(2\)}{\(4\)}\right)\left(\(2\)\left(\frac{x}{r}\right)\sqrt{\(1\) - \left(\frac{x}{r}\right)^\(2\)}\right) + C.
  14. Finalize the Answer: Substituting \(\sin(\theta) = \frac{x}{r}\) and \(\cos(\theta) = \sqrt{1 - \left(\frac{x}{r}\right)^2}\) into \(\sin(2\theta)\), we get \(\sin(2\arcsin(\frac{x}{r})) = 2\left(\frac{x}{r}\right)\sqrt{1 - \left(\frac{x}{r}\right)^2}\). Finally, we substitute \(\sin(2\arcsin(\frac{x}{r}))\) back into our integral result to get the final answer: \(\left(\frac{r^2}{2}\right)\arcsin(\frac{x}{r}) + \left(\frac{r^2}{4}\right)\left(2\left(\frac{x}{r}\right)\sqrt{1 - \left(\frac{x}{r}\right)^2}\right) + C\). Simplifying the expression, we get \(\left(\frac{r^2}{2}\right)\arcsin(\frac{x}{r}) + \left(\frac{r^2}{2}\right)\left(\frac{x}{r}\right)\sqrt{1 - \left(\frac{x}{r}\right)^2} + C\) as the final answer.

More problems from Csc, sec, and cot of special angles