Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Solve multi-step linear equations
Solve.
\newline
10
(
x
−
10
)
=
−
20
10(x-10)=-20
10
(
x
−
10
)
=
−
20
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve.
\newline
3
(
2
z
−
4
)
=
30
3(2 z-4)=30
3
(
2
z
−
4
)
=
30
\newline
Answer:
z
=
z=
z
=
Get tutor help
Solve.
\newline
4
(
2
y
−
5
)
=
28
4(2 y-5)=28
4
(
2
y
−
5
)
=
28
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve.
\newline
6
(
2
y
−
6
)
=
12
6(2 y-6)=12
6
(
2
y
−
6
)
=
12
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve.
\newline
4
(
2
x
−
9
)
=
−
20
4(2 x-9)=-20
4
(
2
x
−
9
)
=
−
20
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve.
\newline
9
(
y
−
10
)
=
−
9
9(y-10)=-9
9
(
y
−
10
)
=
−
9
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve for
x
x
x
:
\newline
2
+
2
(
0.2
x
+
3
)
=
0.5
(
4
x
+
4
)
2+2(0.2 x+3)=0.5(4 x+4)
2
+
2
(
0.2
x
+
3
)
=
0.5
(
4
x
+
4
)
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
:
\newline
−
(
−
8.7
x
+
8
)
−
8
=
1.3
(
−
x
+
1
)
−
10
-(-8.7 x+8)-8=1.3(-x+1)-10
−
(
−
8.7
x
+
8
)
−
8
=
1.3
(
−
x
+
1
)
−
10
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
\mathrm{x}
x
.
\newline
−
3
(
−
3
x
−
5
)
−
5
x
−
5
=
34
-3(-3 x-5)-5 x-5=34
−
3
(
−
3
x
−
5
)
−
5
x
−
5
=
34
\newline
Answer:
Get tutor help
Solve.
\newline
6
(
x
−
8
)
=
6
6(x-8)=6
6
(
x
−
8
)
=
6
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve.
\newline
10
(
y
−
6
)
=
−
40
10(y-6)=-40
10
(
y
−
6
)
=
−
40
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve.
\newline
2
(
2
z
−
10
)
=
12
2(2 z-10)=12
2
(
2
z
−
10
)
=
12
\newline
Answer:
z
=
z=
z
=
Get tutor help
Solve.
\newline
10
(
y
−
1
)
=
20
10(y-1)=20
10
(
y
−
1
)
=
20
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve for
x
\mathrm{x}
x
.
\newline
x
6
=
9
\frac{x}{6}=9
6
x
=
9
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
w
\mathrm{w}
w
.
\newline
5
=
w
10
5=\frac{w}{10}
5
=
10
w
\newline
Answer:
w
=
w=
w
=
Get tutor help
Solve for
s
\mathrm{s}
s
.
\newline
s
9
=
3
\frac{s}{9}=3
9
s
=
3
\newline
Answer:
s
=
s=
s
=
Get tutor help
Solve for
w
\mathrm{w}
w
.
\newline
−
3
=
w
7
-3=\frac{w}{7}
−
3
=
7
w
\newline
Answer:
w
=
w=
w
=
Get tutor help
Solve for
x
\mathrm{x}
x
.
\newline
−
6
=
x
−
5
-6=\frac{x}{-5}
−
6
=
−
5
x
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
s
\mathrm{s}
s
.
\newline
−
10
=
s
−
8
-10=\frac{s}{-8}
−
10
=
−
8
s
\newline
Answer:
s
=
s=
s
=
Get tutor help
Solve for
x
\mathrm{x}
x
.
\newline
x
10
=
−
9
\frac{x}{10}=-9
10
x
=
−
9
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
y
\mathrm{y}
y
.
\newline
6
=
y
7
6=\frac{y}{7}
6
=
7
y
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve for
s
\mathrm{s}
s
.
\newline
s
4
=
4
\frac{s}{4}=4
4
s
=
4
\newline
Answer:
s
=
s=
s
=
Get tutor help
Solve for
a
a
a
.
\newline
20
=
−
10
−
1
3
a
20=-10-\frac{1}{3} a
20
=
−
10
−
3
1
a
\newline
Answer:
a
=
a=
a
=
Get tutor help
−
2
(
s
−
8
)
=
−
16
-2(s - 8) = -16
−
2
(
s
−
8
)
=
−
16
\newline
s
=
□
s = \square
s
=
□
Get tutor help
−
2
(
s
−
8
)
=
−
16
-2(s - 8) = -16
−
2
(
s
−
8
)
=
−
16
\newline
s
=
□
s = \square
s
=
□
Get tutor help
Solve for
z
z
z
.
\newline
2
(
z
+
6
)
=
2
2(z+6)=2
2
(
z
+
6
)
=
2
\newline
z
=
z=
z
=
\newline
Get tutor help
Solve for
r
r
r
.
\newline
Give an exact answer.
\newline
1
2
r
−
3
=
3
(
4
−
3
2
r
)
\frac{1}{2} r-3=3\left(4-\frac{3}{2} r\right)
2
1
r
−
3
=
3
(
4
−
2
3
r
)
\newline
r = \(\square\)
Get tutor help
Solve for
f
f
f
.
\newline
Give an exact answer.
\newline
4
(
0.5
f
−
0.25
)
=
6
+
f
4(0.5 f-0.25)=6+f
4
(
0.5
f
−
0.25
)
=
6
+
f
\newline
f = \(\square\)
Get tutor help
Solve for
q
q
q
.
\newline
3
(
q
−
7
)
=
27
3(q-7)=27
3
(
q
−
7
)
=
27
\newline
q
=
q=
q
=
Get tutor help
Evaluate.
\newline
24
3
7
10
⋅
24
3
1
10
=
243^{\frac{7}{10}} \cdot 243^{\frac{1}{10}}=
24
3
10
7
⋅
24
3
10
1
=
Get tutor help
Solve for
s
s
s
.
\newline
Give an exact answer.
\newline
6
s
−
4
=
8
(
2
+
1
4
s
)
s
=
□
\begin{array}{l} 6 s-4=8\left(2+\frac{1}{4} s\right) \\ s=\square \end{array}
6
s
−
4
=
8
(
2
+
4
1
s
)
s
=
□
Get tutor help
Solve for
e
e
e
.
\newline
Give an exact answer.
\newline
0.75
(
8
+
e
)
=
2
−
1.25
e
e
=
□
\begin{array}{l} 0.75(8+e)=2-1.25 e \\ e=\square \end{array}
0.75
(
8
+
e
)
=
2
−
1.25
e
e
=
□
Get tutor help
Solve for
t
t
t
.
\newline
2
−
16
t
=
6
(
−
3
t
+
2
)
t
=
□
\begin{array}{l} 2-16 t=6(-3 t+2) \\ t=\square \end{array}
2
−
16
t
=
6
(
−
3
t
+
2
)
t
=
□
Get tutor help
Solve for
g
g
g
.
\newline
9
g
=
3
(
−
4
+
5
g
)
g
=
□
\begin{array}{l} 9 g=3(-4+5 g) \\ g=\square \end{array}
9
g
=
3
(
−
4
+
5
g
)
g
=
□
Get tutor help
Solve for
p
p
p
.
\newline
10
p
−
3
=
2
(
12
+
4
p
)
−
7
p
=
□
\begin{array}{l} 10 p-3=2(12+4 p)-7 \\ p=\square \end{array}
10
p
−
3
=
2
(
12
+
4
p
)
−
7
p
=
□
Get tutor help
Solve for
t
t
t
.
\newline
−
t
=
9
(
t
−
10
)
t
=
□
\begin{array}{l} -t=9(t-10) \\ t=\square \end{array}
−
t
=
9
(
t
−
10
)
t
=
□
Get tutor help
Solve for
d
d
d
.
\newline
2
(
5
−
d
)
=
2
−
4
d
d
=
\begin{array}{l} 2(5-d)=2-4 d \\ d= \end{array}
2
(
5
−
d
)
=
2
−
4
d
d
=
Get tutor help
Solve for
g
g
g
.
\newline
Give an exact answer.
\newline
12
g
=
12
(
2
3
g
−
1
)
+
11
g
=
□
\begin{array}{l} 12 g=12\left(\frac{2}{3} g-1\right)+11 \\ g=\square \end{array}
12
g
=
12
(
3
2
g
−
1
)
+
11
g
=
□
Get tutor help
Solve for
s
s
s
.
\newline
2
s
+
4
=
5
(
−
4
−
2
s
)
s
=
□
\begin{array}{l} 2 s+4=5(-4-2 s) \\ s=\square \end{array}
2
s
+
4
=
5
(
−
4
−
2
s
)
s
=
□
Get tutor help
Solve for
b
b
b
.
\newline
3
−
2
(
b
−
2
)
=
2
−
7
b
b
=
□
\begin{array}{l} 3-2(b-2)=2-7 b \\ b=\square \end{array}
3
−
2
(
b
−
2
)
=
2
−
7
b
b
=
□
Get tutor help
Solve for
e
e
e
.
\newline
7
(
2
e
−
1
)
−
3
=
6
+
6
e
e
=
□
\begin{array}{l} 7(2 e-1)-3=6+6 e \\ e=\square \end{array}
7
(
2
e
−
1
)
−
3
=
6
+
6
e
e
=
□
Get tutor help
Solve for
h
h
h
.
\newline
−
(
4
+
h
)
=
3
h
-(4+h)=3 h
−
(
4
+
h
)
=
3
h
\newline
h
=
h=
h
=
Get tutor help
Solve for
m
m
m
.
\newline
3
−
2
(
9
+
2
m
)
=
m
m
=
□
\begin{array}{l} 3-2(9+2 m)=m \\ m=\square \end{array}
3
−
2
(
9
+
2
m
)
=
m
m
=
□
Get tutor help
Solve for
n
n
n
.
\newline
−
4
n
−
8
=
4
(
−
3
n
+
2
)
n
=
□
\begin{array}{l} -4 n-8=4(-3 n+2) \\ n=\square \end{array}
−
4
n
−
8
=
4
(
−
3
n
+
2
)
n
=
□
Get tutor help
Solve for
c
c
c
.
\newline
4
(
3
+
c
)
+
c
=
c
+
4
4(3+c)+c=c+4
4
(
3
+
c
)
+
c
=
c
+
4
\newline
c
=
c=
c
=
Get tutor help
Solve for
n
n
n
.
\newline
Give an exact answer.
\newline
4
n
+
2
=
6
(
1
3
n
−
2
3
)
n
=
□
\begin{array}{l} 4 n+2=6\left(\frac{1}{3} n-\frac{2}{3}\right) \\ n=\square \end{array}
4
n
+
2
=
6
(
3
1
n
−
3
2
)
n
=
□
Get tutor help
Solve for
k
k
k
.
\newline
Give an exact answer.
\newline
2.5
(
4
k
+
2
)
=
12
k
2.5(4 k+2)=12 k
2.5
(
4
k
+
2
)
=
12
k
\newline
k
=
k=
k
=
Get tutor help
Solve for
h
h
h
.
\newline
7
h
=
−
(
2
h
−
18
)
h
=
□
\begin{array}{l} 7 h=-(2 h-18) \\ h=\square \end{array}
7
h
=
−
(
2
h
−
18
)
h
=
□
Get tutor help
Solve for
r
r
r
.
\newline
Give an exact answer.
\newline
1
2
r
−
3
=
3
(
4
−
3
2
r
)
\frac{1}{2} r-3=3\left(4-\frac{3}{2} r\right)
2
1
r
−
3
=
3
(
4
−
2
3
r
)
\newline
r
=
r=
r
=
Get tutor help
Solve for
b
b
b
.
\newline
Give an exact answer.
\newline
0.75
(
8
b
+
4
)
−
1
=
4
b
+
14
b
=
□
\begin{array}{l} 0.75(8 b+4)-1=4 b+14 \\ b=\square \end{array}
0.75
(
8
b
+
4
)
−
1
=
4
b
+
14
b
=
□
Get tutor help
Previous
1
...
2
3
4
Next