Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

243^((7)/(10))*243^((1)/(10))=

Evaluate.\newline243710243110= 243^{\frac{7}{10}} \cdot 243^{\frac{1}{10}}=

Full solution

Q. Evaluate.\newline243710243110= 243^{\frac{7}{10}} \cdot 243^{\frac{1}{10}}=
  1. Recognize properties of exponents: Recognize the properties of exponents.\newlineWhen multiplying two expressions with the same base, you can add the exponents.\newline2437/10×2431/10=2437/10+1/10243^{7/10} \times 243^{1/10} = 243^{7/10 + 1/10}
  2. Add exponents: Add the exponents.\newline710+110=810\frac{7}{10} + \frac{1}{10} = \frac{8}{10}\newlineSimplify the fraction 810\frac{8}{10} to its lowest terms.\newline810=45\frac{8}{10} = \frac{4}{5}\newlineSo, 243710×243110=24345243^{\frac{7}{10}} \times 243^{\frac{1}{10}} = 243^{\frac{4}{5}}
  3. Simplify fraction: Evaluate the expression.\newline243243 is 33 raised to the 55th power (35)(3^5), which can be useful when dealing with fractional exponents.\newline24345=(35)45243^{\frac{4}{5}} = (3^5)^{\frac{4}{5}}\newlineUse the property of exponents (am)n=amn(a^{m})^{n} = a^{m*n}.\newline(35)45=3545(3^5)^{\frac{4}{5}} = 3^{5*\frac{4}{5}}
  4. Evaluate expression: Simplify the exponent.\newline5×45=45\times\frac{4}{5} = 4\newlineSo, 35×45=343^{5\times\frac{4}{5}} = 3^4
  5. Simplify exponent: Calculate the value of 343^4. \newline34=3×3×3×33^4 = 3 \times 3 \times 3 \times 3\newline34=813^4 = 81

More problems from Solve multi-step linear equations