Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Domain and range of square root functions: equations
lim
x
→
3
2
x
−
5
−
1
x
−
3
=
\lim _{x \rightarrow 3} \frac{\sqrt{2 x-5}-1}{x-3}=
lim
x
→
3
x
−
3
2
x
−
5
−
1
=
Get tutor help
lim
x
→
−
4
x
+
4
3
x
+
13
−
1
=
\lim _{x \rightarrow-4} \frac{x+4}{\sqrt{3 x+13}-1}=
lim
x
→
−
4
3
x
+
13
−
1
x
+
4
=
Get tutor help
Which of the following functions are continuous for all real numbers?
\newline
f
(
x
)
=
e
x
f(x)=e^{x}
f
(
x
)
=
e
x
\newline
g
(
x
)
=
x
g(x)=\sqrt{x}
g
(
x
)
=
x
\newline
Choose
1
1
1
answer:
\newline
(A)
f
f
f
only
\newline
(B)
g
g
g
only
\newline
(C) Both
f
f
f
and
g
g
g
\newline
(D) Neither
f
f
f
nor
g
g
g
Get tutor help
Which of the following functions are continuous for all real numbers?
\newline
h
(
x
)
=
sin
(
x
)
h(x)=\sin (x)
h
(
x
)
=
sin
(
x
)
\newline
f
(
x
)
=
cos
(
x
)
f(x)=\cos (x)
f
(
x
)
=
cos
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
h
h
h
only
\newline
(B)
f
f
f
only
\newline
(C) Both
h
h
h
and
f
f
f
\newline
(D) Neither
h
h
h
nor
f
f
f
Get tutor help
Find
lim
x
→
6
h
(
x
)
\lim _{x \rightarrow 6} h(x)
lim
x
→
6
h
(
x
)
for
\newline
h
(
x
)
=
5
x
+
6
.
h(x)=\sqrt{5 x+6} \text {. }
h
(
x
)
=
5
x
+
6
.
Get tutor help
Find
lim
x
→
−
3
g
(
x
)
\lim _{x \rightarrow-3} g(x)
lim
x
→
−
3
g
(
x
)
for
\newline
g
(
x
)
=
7
x
+
22
.
g(x)=\sqrt{7 x+22} \text {. }
g
(
x
)
=
7
x
+
22
.
Get tutor help
lim
x
→
π
4
csc
(
x
)
=
?
\lim _{x \rightarrow \frac{\pi}{4}} \csc (x)=?
x
→
4
π
lim
csc
(
x
)
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
\frac{\sqrt{2}}{2}
2
2
\newline
(B)
3
2
\frac{\sqrt{3}}{2}
2
3
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist.
Get tutor help
lim
x
→
π
6
sin
(
x
)
=
?
\lim _{x \rightarrow \frac{\pi}{6}} \sin (x)=?
x
→
6
π
lim
sin
(
x
)
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
2
2
\frac{\sqrt{2}}{2}
2
2
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist.
Get tutor help
Let
h
(
x
)
=
x
−
2
x
+
7
−
3
h(x)=\frac{x-2}{\sqrt{x+7}-3}
h
(
x
)
=
x
+
7
−
3
x
−
2
when
x
≠
2
x \neq 2
x
=
2
.
\newline
h
h
h
is continuous for all
x
>
−
7
x>-7
x
>
−
7
.
\newline
Find
h
(
2
)
h(2)
h
(
2
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D)
−
3
-3
−
3
Get tutor help
Let
g
(
x
)
=
x
−
5
x
−
4
−
1
g(x)=\frac{x-5}{\sqrt{x-4}-1}
g
(
x
)
=
x
−
4
−
1
x
−
5
when
x
≠
5
x \neq 5
x
=
5
.
\newline
g
g
g
is continuous for all
x
>
4
x>4
x
>
4
.
\newline
Find
g
(
5
)
g(5)
g
(
5
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
8
8
8
\newline
(C)
10
10
10
\newline
(D)
5
5
5
Get tutor help
Let
f
(
x
)
=
x
−
1
−
2
x
−
5
f(x)=\frac{\sqrt{x-1}-2}{x-5}
f
(
x
)
=
x
−
5
x
−
1
−
2
when
x
≠
5
x \neq 5
x
=
5
.
\newline
f
f
f
is continuous for all
x
>
1
x>1
x
>
1
.
\newline
Find
f
(
5
)
f(5)
f
(
5
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
B)
1
2
\frac{1}{2}
2
1
\newline
(C)
1
10
\frac{1}{10}
10
1
\newline
(D)
1
4
\frac{1}{4}
4
1
Get tutor help
Find
lim
x
→
1
f
(
x
)
\lim _{x \rightarrow 1} f(x)
lim
x
→
1
f
(
x
)
for
\newline
f
(
x
)
=
51
−
2
x
.
f(x)=\sqrt{51-2 x} \text {. }
f
(
x
)
=
51
−
2
x
.
Get tutor help
f
(
x
)
=
{
7
+
x
for
−
7
≤
a
x
2
−
5
for
x
>
−
3
f(x)=\left\{\begin{array}{ll} \sqrt{7+x} & \text { for }-7 \leq a \\ x^{2}-5 & \text { for } x>-3 \end{array}\right.
f
(
x
)
=
{
7
+
x
x
2
−
5
for
−
7
≤
a
for
x
>
−
3
\newline
Find
lim
x
→
−
3
f
(
x
)
\lim _{x \rightarrow-3} f(x)
lim
x
→
−
3
f
(
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist.
Get tutor help
The component form of vector
v
⃗
\vec{v}
v
is
v
⃗
=
(
4
,
3
)
\vec{v}=(4,3)
v
=
(
4
,
3
)
.
\newline
Find
4
v
⃗
4 \vec{v}
4
v
.
\newline
4
v
⃗
=
(
□
,
□
)
4 \vec{v}=(\square, \square)
4
v
=
(
□
,
□
)
Get tutor help
f
(
x
)
=
x
2
−
6
x
f(x)=x^{2}-6 x
f
(
x
)
=
x
2
−
6
x
\newline
g
(
x
)
=
x
g(x)=\sqrt{x}
g
(
x
)
=
x
\newline
Evaluate.
\newline
f
(
g
(
25
)
)
=
f(g(25))=
f
(
g
(
25
))
=
Get tutor help
f
(
n
)
=
10
n
f(n)=\sqrt{10 n}
f
(
n
)
=
10
n
\newline
g
(
n
)
=
n
2
−
n
g(n)=n^{2}-n
g
(
n
)
=
n
2
−
n
\newline
Evaluate.
\newline
(
f
∘
g
)
(
10
)
=
(f \circ g)(10)=
(
f
∘
g
)
(
10
)
=
Get tutor help
f
(
c
)
=
3
c
−
8
f(c)=3 c-8
f
(
c
)
=
3
c
−
8
\newline
g
(
c
)
=
14
−
c
g(c)=\sqrt{14-c}
g
(
c
)
=
14
−
c
\newline
Evaluate.
\newline
(
f
∘
g
)
(
−
11
)
=
(f \circ g)(-11)=
(
f
∘
g
)
(
−
11
)
=
Get tutor help
(
y
−
k
)
y
=
1
3
(y-k) y=\frac{1}{3}
(
y
−
k
)
y
=
3
1
\newline
In the given equation,
k
k
k
is a constant. One of the solutions to the equation is:
\newline
3
+
9
+
4
(
1
3
)
2
\frac{3+\sqrt{9+4\left(\frac{1}{3}\right)}}{2}
2
3
+
9
+
4
(
3
1
)
\newline
What is the value of
k
k
k
?
Get tutor help
Solve the following equation for
w
w
w
.
\newline
5
−
w
4
=
w
+
8
w
=
\begin{array}{l} \sqrt{5-\frac{w}{4}}=\sqrt{w+8} \\ w= \end{array}
5
−
4
w
=
w
+
8
w
=
Get tutor help
Solve the following equation for
y
y
y
.
\newline
2
y
+
5
=
15
−
2
y
y
=
\begin{array}{l} 2 y+5=\sqrt{15-2 y} \\ y= \\ \end{array}
2
y
+
5
=
15
−
2
y
y
=
Get tutor help
Solve the following equation for
z
z
z
.
\newline
4
z
+
9
=
z
+
1
z
=
□
\begin{array}{l} \quad \sqrt{4 z+9}=z+1 \\ z=\square \end{array}
4
z
+
9
=
z
+
1
z
=
□
Get tutor help
Solve the following equation for
y
y
y
.
\newline
2
y
−
3
=
3
y
2
−
10
x
y
=
□
\begin{array}{l} 2 y-3=\sqrt{3 y^{2}-10 x} \\ y=\square \end{array}
2
y
−
3
=
3
y
2
−
10
x
y
=
□
Get tutor help
Solve the following equation for
x
x
x
.
\newline
5
x
−
4
=
x
−
2
x
=
\begin{array}{l} \sqrt{5 x-4}=x-2 \\ x= \end{array}
5
x
−
4
=
x
−
2
x
=
Get tutor help
What is the midline equation of the function
\newline
h
(
x
)
=
−
4
sin
(
x
−
π
4
)
?
h(x)=-4 \sin \left(x-\frac{\pi}{4}\right) ?
h
(
x
)
=
−
4
sin
(
x
−
4
π
)
?
\newline
y
=
y=
y
=
Get tutor help
Solve the following equation for
y
y
y
.
\newline
y
2
+
4
=
4
y
y
=
\begin{array}{l} \sqrt{y^{2}+4}=\sqrt{4 y} \\ y= \end{array}
y
2
+
4
=
4
y
y
=
Get tutor help
If
5
a
=
5
5^{a}=\sqrt{5}
5
a
=
5
, what is the value of
a
a
a
?
Get tutor help
h
(
x
)
=
4
x
h(x)=\sqrt{4 x}
h
(
x
)
=
4
x
\newline
The function
h
h
h
is defined. What is the value of
h
(
9
)
h(9)
h
(
9
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
3
3
3
\newline
(B)
6
6
6
\newline
(C)
12
12
12
\newline
(D)
36
36
36
Get tutor help
f
(
x
)
=
x
−
1
f(x)=\sqrt{x-1}
f
(
x
)
=
x
−
1
\newline
The function
f
f
f
is defined. What is the value of
f
(
10
)
f(10)
f
(
10
)
?
Get tutor help
The altitude at which we boil an egg affects how long it takes for the egg to achieve perfect hardness.
\newline
It takes
198
198
198
seconds to boil a perfect egg at the lowest place possible, the edge of the Dead Sea, which has an altitude of
−
418
-418
−
418
meters.
\newline
The highest place possible is the summit of Mount Everest which has an altitude of
8848
8848
8848
meters. It takes
209
209
209
seconds to boil a perfect egg there.
\newline
T
(
a
)
T(a)
T
(
a
)
models the time (in seconds) it takes to boil a perfect egg at an altitude of
a
a
a
meters.
\newline
Which number type is more appropriate for the domain of
T
T
T
?
\newline
Choose
1
1
1
answer:
\newline
(A) Integers
\newline
(B) Real numbers
Get tutor help
Alice studies the relationship between climate and heart disease around the world.
\newline
H
(
t
)
H(t)
H
(
t
)
models the probability for the occurrence of heart disease (in percents relative to the global average) at an area where the temperature is
t
t
t
degrees Celsius.
\newline
According to Alice's model, when the temperature is
−
5
∘
C
-5^{\circ}C
−
5
∘
C
(which is the lowest temperature included in the model), the probability is
10
%
10\%
10%
above average. Then the probability decreases until the temperature reaches
3
0
∘
C
30^{\circ}C
3
0
∘
C
(which is the highest temperature included in the model), where the probability is
20
%
20\%
20%
below average.
\newline
Which number type is more appropriate for the domain of
H
H
H
?
\newline
Choose
1
1
1
answer:
\newline
(A) Integers
\newline
(B) Real numbers
Get tutor help
Find the derivative of
p
(
x
)
p(x)
p
(
x
)
.
\newline
p
(
x
)
=
ln
(
x
)
p(x) = \ln(\sqrt{x})
p
(
x
)
=
ln
(
x
)
\newline
p
′
(
x
)
=
p' (x) =
p
′
(
x
)
=
______
Get tutor help
What is the domain of this function?
\newline
y
=
x
y = \sqrt{x}
y
=
x
Get tutor help
What is the domain of this function?
\newline
y
=
x
y = \sqrt{x}
y
=
x
\newline
Choices:
\newline
{
x
∣
x
≥
0
}
\{x|x \geq 0\}
{
x
∣
x
≥
0
}
\newline
{
x
∣
x
≤
0
}
\{x|x \leq 0\}
{
x
∣
x
≤
0
}
\newline
{
x
∣
x
<
0
}
\{x | x < 0\}
{
x
∣
x
<
0
}
\newline
{
x
∣
x
>
0
}
\{x|x>0\}
{
x
∣
x
>
0
}
Get tutor help
Previous
1
2