Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(sqrt(x-1)-2)/(x-5) when 
x!=5.

f is continuous for all 
x > 1.
Find 
f(5).
Choose 1 answer:
(A) 1
(B) 
(1)/(2)
(C) 
(1)/(10)
(D) 
(1)/(4)

Let f(x)=x12x5 f(x)=\frac{\sqrt{x-1}-2}{x-5} when x5 x \neq 5 .\newlinef f is continuous for all x>1 .\newlineFind f(5) f(5) .\newlineChoose 11 answer:\newline(A) 11\newlineB) 12 \frac{1}{2} \newline(C) 110 \frac{1}{10} \newline(D) 14 \frac{1}{4}

Full solution

Q. Let f(x)=x12x5 f(x)=\frac{\sqrt{x-1}-2}{x-5} when x5 x \neq 5 .\newlinef f is continuous for all x>1 x>1 .\newlineFind f(5) f(5) .\newlineChoose 11 answer:\newline(A) 11\newlineB) 12 \frac{1}{2} \newline(C) 110 \frac{1}{10} \newline(D) 14 \frac{1}{4}
  1. Understand the problem: Understand the problem.\newlineWe need to find the value of the function f(x)f(x) at x=5x=5. However, the function is not defined at x=5x=5 because it would result in a division by zero. Since the function is continuous for all x > 1, we can use the limit process to find f(5)f(5).
  2. Set up the limit: Set up the limit to find f(5)f(5). To find f(5)f(5), we need to calculate the limit of f(x)f(x) as xx approaches 55. limx5x12x5\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x-5}
  3. Apply L'Hôpital's Rule: Apply L'Hôpital's Rule.\newlineSince the limit is of the form 0/00/0, we can apply L'Hôpital's Rule, which states that if the limit of f(x)/g(x)f(x)/g(x) as xx approaches a value cc is 0/00/0 or ±/±\pm\infty/\pm\infty, then the limit is the same as the limit of the derivatives of f(x)f(x) and g(x)g(x) as xx approaches cc.\newlinef(x)/g(x)f(x)/g(x)00
  4. Differentiate the numerator and denominator: Differentiate the numerator and denominator. \newlinef(x)=f'(x) = derivative of x12=12(x1)12\sqrt{x-1} - 2 = \frac{1}{2}(x-1)^{-\frac{1}{2}}\newlineg(x)=g'(x) = derivative of x5=1x - 5 = 1\newlineNow we have:\newlinelimx512(x1)121\lim_{x\to5} \frac{\frac{1}{2}(x-1)^{-\frac{1}{2}}}{1}
  5. Calculate the limit: Calculate the limit.\newlineNow we substitute x=5x=5 into the derivative of the numerator:\newlinelimx5(12)(x1)12=(12)(51)12=(12)(4)12=(12)(12)=14\lim_{x\to 5} \left(\frac{1}{2}\right)(x-1)^{-\frac{1}{2}} = \left(\frac{1}{2}\right)(5-1)^{-\frac{1}{2}} = \left(\frac{1}{2}\right)(4)^{-\frac{1}{2}} = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4}
  6. Conclude the solution: Conclude the solution.\newlineSince the limit as xx approaches 55 of f(x)f(x) is 14\frac{1}{4}, and the function is continuous for all x > 1, we can conclude that f(5)=14f(5) = \frac{1}{4}.

More problems from Domain and range of square root functions: equations