Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(c)=3c-8

g(c)=sqrt(14-c)
Evaluate.

(f@g)(-11)=

f(c)=3c8 f(c)=3 c-8 \newlineg(c)=14c g(c)=\sqrt{14-c} \newlineEvaluate.\newline(fg)(11)= (f \circ g)(-11)=

Full solution

Q. f(c)=3c8 f(c)=3 c-8 \newlineg(c)=14c g(c)=\sqrt{14-c} \newlineEvaluate.\newline(fg)(11)= (f \circ g)(-11)=
  1. Understand Function Composition: Understand the composition of functions. The composition of functions (fg)(c)(f \circ g)(c) means that we first apply gg to cc, and then apply ff to the result of g(c)g(c). So, (fg)(c)=f(g(c))(f \circ g)(c) = f(g(c)).
  2. Evaluate g(11)g(-11): Evaluate g(11)g(-11). We need to find the value of g(c)g(c) when c=11c = -11. So, we calculate g(11)=14(11)=14+11=25g(-11) = \sqrt{14 - (-11)} = \sqrt{14 + 11} = \sqrt{25}.
  3. Simplify g(11)g(-11): Simplify g(11)g(-11). The square root of 2525 is 55, so g(11)=5g(-11) = 5.
  4. Evaluate f(g(11))f(g(-11)): Evaluate f(g(11))f(g(-11)). Now we need to apply ff to the result of g(11)g(-11), which is 55. So, we calculate f(5)=3×58f(5) = 3 \times 5 - 8.
  5. Simplify f(5)f(5): Simplify f(5)f(5).\newlineMultiplying 33 by 55 gives us 1515, and subtracting 88 from 1515 gives us 77. So, f(5)=158=7f(5) = 15 - 8 = 7.

More problems from Domain and range of square root functions: equations