Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(y-k)y=(1)/(3)
In the given equation, 
k is a constant. One of the solutions to the equation is:

(3+sqrt(9+4((1)/(3))))/(2)
What is the value of 
k ?

(yk)y=13 (y-k) y=\frac{1}{3} \newlineIn the given equation, k k is a constant. One of the solutions to the equation is:\newline3+9+4(13)2 \frac{3+\sqrt{9+4\left(\frac{1}{3}\right)}}{2} \newlineWhat is the value of k k ?

Full solution

Q. (yk)y=13 (y-k) y=\frac{1}{3} \newlineIn the given equation, k k is a constant. One of the solutions to the equation is:\newline3+9+4(13)2 \frac{3+\sqrt{9+4\left(\frac{1}{3}\right)}}{2} \newlineWhat is the value of k k ?
  1. Given equation and solution: We are given the equation (yk)y=13(y-k)y = \frac{1}{3} and a solution y=3+9+4(13)2y = \frac{3+\sqrt{9+4(\frac{1}{3})}}{2}. To find the value of kk, we will substitute the given solution into the original equation and solve for kk.
  2. Substituting the solution: First, let's substitute y=3+9+4(13)2y = \frac{3+\sqrt{9+4\left(\frac{1}{3}\right)}}{2} into the equation (yk)y=13(y-k)y = \frac{1}{3}. \newline(3+9+4(13)2k)3+9+4(13)2=13\left(\frac{3+\sqrt{9+4\left(\frac{1}{3}\right)}}{2} - k\right) \cdot \frac{3+\sqrt{9+4\left(\frac{1}{3}\right)}}{2} = \frac{1}{3}
  3. Simplifying the square root term: Now, let's simplify the square root term in the solution. \newlineWe have 9+4(13)=9+43\sqrt{9+4(\frac{1}{3})} = \sqrt{9+\frac{4}{3}} \newline=9+1.3333= \sqrt{9+1.3333} \newline=10.3333= \sqrt{10.3333}
  4. Substituting the simplified square root: Substitute the simplified square root back into the equation: \newline(3+10.33332k)3+10.33332=13(\frac{3+\sqrt{10.3333}}{2} - k) \cdot \frac{3+\sqrt{10.3333}}{2} = \frac{1}{3} \newline(3+10.33332)2k3+10.33332=13(\frac{3+\sqrt{10.3333}}{2})^{2} - k \cdot \frac{3+\sqrt{10.3333}}{2} = \frac{1}{3}
  5. Squaring the solution: Now, let's square the solution yy to prepare for substitution: \newline(3+10.33332)2=9+310.3333+310.3333+10.33334=19.3333+610.33334\left(\frac{3+\sqrt{10.3333}}{2}\right)^2 = \frac{9 + 3\cdot\sqrt{10.3333} + 3\cdot\sqrt{10.3333} + 10.3333}{4} = \frac{19.3333 + 6\cdot\sqrt{10.3333}}{4}
  6. Substituting y2y^2 back into the equation: Substitute y2y^2 back into the equation:\newline19.3333+610.33334k3+10.33332=13\frac{19.3333 + 6\cdot\sqrt{10.3333}}{4} - k \cdot \frac{3+\sqrt{10.3333}}{2} = \frac{1}{3}
  7. Clearing the fraction: Multiply both sides of the equation by 33 to clear the fraction: \newline3×(19.3333+610.33334k3+10.33332)=13 \times \left(\frac{19.3333 + 6\sqrt{10.3333}}{4} - k \cdot \frac{3+\sqrt{10.3333}}{2}\right) = 1
  8. Simplifying the left side: Simplify the left side of the equation:\newline(19.3333+610.33334×33k3+10.33332)=1\left(\frac{19.3333 + 6\sqrt{10.3333}}{4} \times 3 - 3k \cdot \frac{3+\sqrt{10.3333}}{2}\right) = 1
  9. Distributing the 33: Now, let's distribute the 33 on the left side of the equation:\newline 58+1810.333349k+3k10.33332=1\frac{58 + 18\sqrt{10.3333}}{4} - \frac{9k+3k\sqrt{10.3333}}{2} = 1
  10. Having a common denominator: To simplify further, we need to have a common denominator for the terms on the left side. The common denominator is 44, so we multiply the second term by 22\frac{2}{2} to get the same denominator:\newline58+1810.3333418k+6k10.33334=1\frac{58 + 18\sqrt{10.3333}}{4} - \frac{18k + 6k\sqrt{10.3333}}{4} = 1
  11. Combining like terms: Combine like terms on the left side:\newline(58+1810.333318k6k10.33334)=1(\frac{58 + 18\sqrt{10.3333} - 18k - 6k\sqrt{10.3333}}{4}) = 1
  12. Clearing the denominator: Multiply both sides by 44 to clear the denominator: \newline58+1810.333318k6k10.3333=458 + 18\sqrt{10.3333} - 18k - 6k\sqrt{10.3333} = 4
  13. Isolating k: Rearrange the terms to isolate k: \newline18k+6k10.3333=58+1810.3333418k + 6k\sqrt{10.3333} = 58 + 18\sqrt{10.3333} - 4
  14. Simplifying the right side: Simplify the right side: \newline18k+6k10.3333=54+1810.333318k + 6k\sqrt{10.3333} = 54 + 18\sqrt{10.3333}
  15. Factoring out kk: Factor out kk on the left side:\newlinek(18+610.3333)=54+1810.3333k(18 + 6\sqrt{10.3333}) = 54 + 18\sqrt{10.3333}
  16. Dividing both sides by (18+610.3333)(18 + 6\sqrt{10.3333}): Divide both sides by (18+610.3333)(18 + 6\sqrt{10.3333}) to solve for kk:k=54+1810.333318+610.3333k = \frac{54 + 18\sqrt{10.3333}}{18 + 6\sqrt{10.3333}}
  17. Simplifying the right side: Simplify the right side by dividing both the numerator and the denominator by 66:\newlinek=6(9+310.3333)6(3+10.3333)k = \frac{6(9 + 3\sqrt{10.3333})}{6(3 + \sqrt{10.3333})} \newlinek=9+310.33333+10.3333k = \frac{9 + 3\sqrt{10.3333}}{3 + \sqrt{10.3333}}
  18. Solve for the value of kk: \newlinek=3(3+10.3333)3+10.3333k = \frac{3(3 + \sqrt{10.3333})}{3 + \sqrt{10.3333}}\newlinek=3k = 3

More problems from Domain and range of square root functions: equations