Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr(pi)/(4))csc(x)=?
Choose 1 answer:
(A) 
(sqrt2)/(2)
(B) 
(sqrt3)/(2)
(C) 
sqrt2
(D) The limit doesn't exist.

limxπ4csc(x)=? \lim _{x \rightarrow \frac{\pi}{4}} \csc (x)=? \newlineChoose 11 answer:\newline(A) 22 \frac{\sqrt{2}}{2} \newline(B) 32 \frac{\sqrt{3}}{2} \newline(C) 2 \sqrt{2} \newline(D) The limit doesn't exist.

Full solution

Q. limxπ4csc(x)=? \lim _{x \rightarrow \frac{\pi}{4}} \csc (x)=? \newlineChoose 11 answer:\newline(A) 22 \frac{\sqrt{2}}{2} \newline(B) 32 \frac{\sqrt{3}}{2} \newline(C) 2 \sqrt{2} \newline(D) The limit doesn't exist.
  1. Find sin(π4)\sin(\frac{\pi}{4}): We need to find the limit of csc(x)\csc(x) as xx approaches π4\frac{\pi}{4}. The csc(x)\csc(x) function is the reciprocal of the sin(x)\sin(x) function, so csc(x)=1sin(x)\csc(x) = \frac{1}{\sin(x)}. Therefore, we need to find the value of sin(x)\sin(x) when xx is π4\frac{\pi}{4}.
  2. Calculate csc(π4)\csc(\frac{\pi}{4}): The value of sin(π4)\sin(\frac{\pi}{4}) is a well-known trigonometric value. Since π4\frac{\pi}{4} is an angle in the first quadrant where all trigonometric functions are positive, sin(π4)=22\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}.
  3. Simplify csc(π4)\csc(\frac{\pi}{4}): Now that we have the value of sin(π4)\sin(\frac{\pi}{4}), we can find the value of csc(π4)\csc(\frac{\pi}{4}) by taking the reciprocal of sin(π4)\sin(\frac{\pi}{4}). So, csc(π4)=1(2/2)\csc(\frac{\pi}{4}) = \frac{1}{(\sqrt{2}/2)}.
  4. Simplify csc(π4)\csc(\frac{\pi}{4}): Now that we have the value of sin(π4)\sin(\frac{\pi}{4}), we can find the value of csc(π4)\csc(\frac{\pi}{4}) by taking the reciprocal of sin(π4)\sin(\frac{\pi}{4}). So, csc(π4)=1(2/2)\csc(\frac{\pi}{4}) = \frac{1}{(\sqrt{2}/2)}.To simplify 1(2/2)\frac{1}{(\sqrt{2}/2)}, we multiply the numerator and the denominator by 2\sqrt{2} to get rid of the radical in the denominator. This gives us csc(π4)=2(22/2)=2(2/2)=2\csc(\frac{\pi}{4}) = \frac{\sqrt{2}}{(\sqrt{2}*\sqrt{2}/2)} = \frac{\sqrt{2}}{(2/2)} = \sqrt{2}.

More problems from Domain and range of square root functions: equations